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Abstract. This paper investigates application of Artificial Neural Network (ANN) for dolomite 

oil agglomeration modelling including parameters such as surfactants concentration, oil 

dosage, time, pH and mixing intensity. The main algorithm implemented for weights 

calculation was the Levenberg-Marquardt (LM) method. Common problem during process 

design of neural models is suitable selection of structure complexity. It is known that several 

connection can influence on final results after off-line training. For improvement of this stage 

of preparation of the net, pruning method was implemented. Analysed algorithm was based on 

the main theory of Optimal Brain Damage (OBD) technique. Results present high quality of 

process recovery prediction. Achieved outcome also shows that reduction of the applied of the 

neural network can lead to higher precision of calculation. 

1. Introduction 

Neural network is a flexible model, that can be adapted for realization of specific task in training 

process. It is useful attribute in a wide range of engineering applications, successful implementation of 

those models are noted in following fields: control (for instance of electrical drives) [1]-[3], state 

variables estimation [4], faults detection [5], signal prediction [6], data and images processing [7], etc. 

Based on papers published in journals and conference proceedings, three main – the most popular – 

group of structures can be mentioned: Multi-Layer Perceptron (MLP), Radial Basis Function Neural 

Networks (RBFNN) and Recurrent Neural Networks (RNN) [8], [9]. Characteristic feature of the first 

of them is one direction of input signals propagation inside of neural network. Moreover, mapping of 

data space is realized as global approximation using combination of several function of activation 

functions [10]. Neural networks with radial functions applied in hidden layer, can analyse data 

grouping following values in clusters (locally) and then aggregation is realized as weighted sum of 

signals. The division of input elements, realized with those models, is often used in the classification 

of data. Last significant structures of networks are RNN, those networks contain additional memory 

elements implemented in inner feedback connections. It is important advantage for processing of 

dynamic, time changeable variables.  

Presently, growing number of neural network application is also being observed in chemistry. 

Multi-Layer Perceptron neural network can be applied for flotation process of coal fines modelling 
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[11]. Implementations of RBFNN are also noticed for similar task [12], moreover authors present 

comparison between different method of modelling used for this purpose. Other example of neural 

network usage is prediction of heavy metals recovery from wastewater [13]. Important problem related 

to neural modelling is highlighted in [14]. Final results of training and neural calculation can highly 

depend on initial values of weights (that are the most often selected randomly). For solution of this 

problem genetic algorithm was used. 

In this application neural networks are used for calculation of chemical process efficiency, based 

on parameters and conditions of preparation. Modelling of such process can be treated as 

representation of data using function with one output and a few coefficients. This function and 

parameters are hard to simple definition, however based on experimental data representing specific 

behaviour, neural model of the chemical process can be prepared. For this purpose the feedforward 

neural networks with sigmoidal functions were selected for this task. 

Adaptation of neural network for specified task is realized during training process. It concerns 

calculation of internal coefficients - weights. The most effective methods for this purpose are gradient-

based optimization techniques. In this application the Levenberg-Marquardt algorithm was 

implemented. It is the second order optimization, the main point of this method is minimization of cost 

function using information about the Hessian matrix. It represents influence of weights changes on 

quality of network calculation [8]. Selected method used for coefficients of network selection give 

better results than algorithms based on gradients only. However it takes more time, but this 

disadvantage is not so much important during off-line training. One of the most important problem 

during design process of neural network is proper complexity of structure selection. Effective methods 

in real application is evolution of the network in parallel to adaptation of weights. So, at the same time 

values of neural network parameters and structure are modified [15]. Initial structure is defined a 

priori, then several connections are removed from the neural network. For correct determination of 

unnecessary connection additional saliency parameters (for each weights) are calculated. In 

application presented in this paper, decision is based on Optimal Brain Damage algorithm [16]. 

This paper is divided in five sections. Firstly, short introduction is presented. Then is the oil 

agglomeration process briefly described. In following part of article the structure of implemented 

neural network and method of training are shown. After presentation and analysis of results 

concluding remark are given.  

2. Oil agglomeration process description 

Oil agglomeration is a colloidal method, in which fine particles can be easily separated from mineral 

suspension via addition of oil to minerals slurry. A rapid mixing of such system leads to the adhesion 

of oil droplets into the mineral surface, where the formed liquid bridges link individual particles into 

larger aggregates, called agglomerates [17]. The success of the process strongly depends on the 

properties of the solid surface and oil/water interface. To be agglomerated the particles have to possess 

hydrophobic surface, in the case of hydrophilic ones after addition of oil the particles will remain un-

agglomerated. This behaviour is very important especially during minerals processing, when a large 

amount of fine particles is produced via grinding of ore rock to reveal valuable minerals. Recovering 

of those valuable particles is a complex task because of the grains size (below 10 µm). Commonly 

used methods such as flotation, filtration or sedimentation in such condition are not very effective, and 

require additional steps. Oil agglomeration can be alternative for those methods, because the process 

makes possible to agglomerate the fine particles (below 5µm) with high selectivity using a simple 

equipment. Despite this, the process is not used on a large scale due to the high cost resulting from the 

use of large amounts of binding liquid (oil). Therefore, for several years, researchers have been trying 

to reduce the costs of the process. One solution is to introduce the binding liquid in a form of emulsion 

into the suspension [18]. It is happened because with the reduction of droplets size, the surface area 

increased, which leads to creation of more bridges on the mineral surface using small amount of oil. 

Moreover, the addition of surfactants to the emulsion lowers the interfacial tension resulting in 

formation of stronger agglomerates.  

Modelling of such process is very difficult and time taking because it requires solving complex 

mathematical equations problematic in real applications. There is a lot of parameters that can affect the 
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course of oil agglomeration, such as oil type and amount, solid content, surfactant concentration, time, 

pH and agitation rate. That is way to avoid this difficulties Artificial Neural Network was utilized for 

modelling of the process. For preparation of the ANN model we used experimental data published in 

[18], where oil (kerosene) was introduced to the suspension in a form of emulsion with cationic 

surfactant. As mineral, dolomite was used, and the surface of the grains was modified with anionic 

collectors. During the experiment the pH, oil dosage, rate and time of mixing, and surfactants 

concentration were changed and taken for modelling as inputs. The output was process recovery 

calculated as ratio of mass agglomerate to total mass of the feed. 

3. Mathematical description of neural model, training process and Optimal Brain Damage 

pruning 

Neural network is combination of elementary nodes that realize multiplication of input signals, then 

achieved values are added, in the next stage the results are arguments for activation function. 

Individual neurons are connected in a structure that globally performs complex function (figure 1). 

Exemplary (for network with one hidden layer) equation describing details of ANN calculations is 

presented below: 
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where: ynn-vector of output values, xin-input vector, h-vector of arguments for activation function in 

output layer, N-number of inputs, J-number of nodes in hidden layer, wij-weights between i-th and j-th 

node, b0-bias values, fo-activation function of the output layer (the most often linear function), fh-

activation function of the hidden layer (the most often sigmoidal function). 

 

 

Figure 1. The topology of applied Artificial Neural Network. 

 

One of the main elements affecting the final value of neural structure ynn are values of weight 

coefficients. Therefore, for correct approximation of elements not included in training dataset, optimal 

selection of those parameters is particularly important. In this application, for this purpose the 

Levenberg-Marquardt algorithm was implemented [15]. In each iteration k of this method, weights are 

recalculated, introducing correction ∆w: 
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Training process assumes modification of weights in order to minimization of processing error - 

cost function E. Simplified definition of this value can be expressed as (assuming one output of neural 

model): 
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where: di – i-th reference value, ynni – i-th neural network output value (obtained for di). The base 

information during calculation of weights is the Jacobian matrix, defined using following expression 

(for n weights and M patterns): 

 

 



































































n

MMM

n

n

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e









21

2

2

2

1

2

1

2

1

1

1

wJ .                                                   (4) 

 

According to the Gauss-Newton equation, correction of weights are calculated using formula 

presented below:  
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In equation (5) the Hessian matrix H is defined using following equation: 
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then, combining (5) and (6): 
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For simplification of inverse matrix H-1 calculation, approximation of H is introduced:  

 

    I wHwG .                                                                  (8) 

 

where: I-the identity matrix. The inverse of the matrix G is possible to calculate if: 

 

  0 i ,                                                                        (9) 

 

where: λi – i-th element of  the eigenvalue vector of H matrix. Concluding above presented 

considerations, update of network coefficients are calculated using following expression:  
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In presented work, the Levenberg-Marquardt algorithm was combined with Optimal Brain Damage 

method implemented for weights elimination. The OBD defines coefficients calculated for each 

parameter of neural network: 
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The main information in OBD is also the hessian matrix, it should be mentioned that the H matrix 

is diagonally dominant, so only diagonal elements are used in equation (11). Details are presented in 

[17]. Based on this information network can be reduced (coefficients with the smallest saliency values 

Si). It should be noted that some information used for calculation of Si index can be taken after the 

Levenberg-Marquardt algorithm processing.  

Following stages of OBD algorithm operation are presented in figure 2. Algorithm starts with 

predefinition of initial parameters: initial structure of model, number of weights removed in each 

sequence, number of all removed weights, conditions of training, stopping criteria, etc. Firstly, 

complete training is realized (according to (10)). Then, selection of weights designed for elimination 

should be done. The decision about replacing actual value to zero is made based on value of 

coefficients Si (calculated for several coefficients of neural network). In following step, weights are 

eliminated and overall error is calculated. If closing conditions are not achieved, the whole process is 

repeated.  

 

 

Figure 2. Flowchart presenting data processing in OBD algorithm. 
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4. Results 

Based on theoretical description of neural model and training process, including structure 

optimization, presented in previous parts of this article, special code was prepared. Then tests were 

done. The database was prepared in chemical laboratory, so input vector of ANN contains 

(respectively): mixing rate, time of mixing,  anionic surfactant amount (mg/g), cationic surfactant 

amount (mg/g), kerosene amount (ml/g), pH. As anionic and cationic surfactant used sodium oleate 

and dodecylammonium hydrochloride, respectively, which are commonly used in mineral processing 

as collectors. Output of the neural network model is recovery. The number of samples (input-output 

elements) included in training vector was equal 52. 

The first research presents general trend of error fluctuation under changes of neural network 

topology (figure 3). Only exemplary tests are shown, other conditions of training were assumed. 

However the goal was observation of overall tendency of error changes. Each value was calculated 

using following formula: 
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In following iteration of OBD algorithm, the connections are removed (weights set to zero). It can 

be observed that initial number of hidden nodes was not selected properly. After elimination of some 

group of weights, quality of calculation was improved (optimal structure was obtained). This is in line 

with theory of neural networks. 

 

 

 

 

 

Figure 3. Exemplary values of processing errors during connection reduction. 
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Figure 4. Tests presenting influence of structure optimization on recovery calculation. 

 

Subsequent pictures (figure 4) show details of exemplary training process and results of structure 

optimization. Next to the results, presenting real and calculated values of recovery, in the right column 

changes of neural topology is shown. The colours of lines responds to values of weights. Initial 

structure was {6-5-6-1}, it means: 6 inputs, 5 neurons in the first hidden layer and 6 nodes in the 

second layer, 1 output. The whole OBD optimization, in this test, was repeated 30 times, in each 

iteration 3 connections were reduced. Best results were obtained after removing 33 links. However, it 

should be mentioned that, in the best topology whole nodes were eliminated. Implemented 

optimization method modifies the ANN, it gives significant improvements of results.  

One of important expectation for neural networks is high quality of processing, under input values 

not included in training process. In the presented work, training data was not used in the tests. 

Generally, it is possible to divide samples into two groups, but in the case of the task being analyzed 

this is problematic due to the use of experimental data (limited number of samples). For this reason, in 

all tests, the measured values were appropriately disturbed by introducing noise. 

Best results achieved in this research are presented in figure 5. The LM-OBD algorithm has started 

with following neural network: {6-15-16-1}, number of all removed connections was equal 60, 

number of removed connections for the best results was equal 57. It should be also noted that each 

training using the Levenberg-Marquardt method takes 1000 iteration (this number was selected 

experimentally, for dataset used in this project, based on observation of validation error and gradient), 

and total time of calculations using LM-OBD was 22.3157s. 
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Figure 5. Example of ANN calculation – the best results. 

5. Conclusions 

This paper is focused on dolomite particles oil agglomeration modelling using neural networks. Based 

on obtained neural model, recovery of the process, for introduced input parameters, can be estimated. 

In next step, optimization of the process, based on prepared neural model can be done (assessment of 

the required input parameters in order to achieve the assumed performance). Precision of calculation 

of obtained neural model was very high. It is worth to mention that all calculations were done for real 

data collected in laboratory experiment. Important part of this work includes optimization of the 

ANN’s structure. For this purpose Optimal Brain Damage method was implemented. Results confirm 

theoretical considerations related to relationship of neural network complexity and results of 

processing.  
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