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Abstract. Steel producers are continuously developing the mechanical properties and improving 

the weldability of high strength steels. Quenched and tempered steels belong to the one of the 

highest strength grades of structural steels with outstanding toughness characteristics due to the 

high temperature tempering. During fusion welding the thermal cycle irreversibly changes the 

microstructure and the mechanical properties of the base material, therefore an inhomogeneous 

heat-affected zone (HAZ) forms. In the HAZ hardened and softened zones occur. Due to the 

thermal cycles experiences during welding, these HAZs can exhibit significant losses in 

toughness when compared to the base metal. In real welded joints the HAZ properties can be 

analysed by conventional material tests to a limited degree; therefore physical simulators have 

been developed for the detailed examination of different HAZ areas. In the present research work 

the HAZ properties of a 960 MPa yield strength quenched and tempered steel (S960QL 

according to EN 10025-6) are investigated. Since the toughness reduction can be only partially 

handled by the adjustment of welding parameters, the possibility of local post-weld heat 

treatment was examined. Based on preliminary physical simulations and welding experiments a 

medium heat input gas metal arc welding technology (t8/5 = 15 s) was selected for the HAZ 

simulations. The welding and the post-weld thermal cycles were determined according to the 

Rykalin 3D model. The effect of post weld heat treatment on the properties of the selected coarse-

grained (CGHAZ), intercritical (ICHAZ) and intercritically reheated coarse-grained 

(ICCGHAZ) zones were investigated by electron microscopic, hardness tests and instrumented 

Charpy V-notch impact tests. The materials tests showed significant improvement of the 

toughness properties especially in ICHAZ due to the post-weld tempering, whilst the softening 

was acceptable. 

1.  Introduction 

Nowadays the application ratio of high strength steels is continuously increasing. Due to their 

outstanding mechanical properties, especially their strength properties, significant weight reduction can 

be achieved. Besides decreasing operational costs due to the energy saving in mobile structures, thinner 

plates and smaller cross sections result in savings in the amount of base and filler materials applied. 

Because of the above-mentioned advantages the development of strength characteristics of steels is in 

the research focus of steel and welding consumable producers [1]. Besides the outstanding yield strength 

the new generations of high strength steels have increased toughness and acceptable ductility properties 

[2]. When the possible applications of high strength steels are considered their weldability and the 
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behaviour of welded components during the total lifetime of the welded joint cannot be neglected [3], 

[4]. Therefore, in parallel to their development as base materials there is extensive research related to 

their welding. For the demanded intensive spread of high strength steels the possible advantages related 

to their fatigue resistance should be also exploited; however, the effect of mismatch ratio on the fatigue 

behaviour, further complicates this goal as the available filler metals are limited in the higher categories 

[5]. 

Quenched and tempered (Q+T) high strength steels belong to the highest steel grades of structural 

steels. They have generally a tempered martensitic microstructure due to the water cooling used in the 

quenching cycle and to the high temperature tempering applied after quenching. In order to realize the 

quenching condition in the whole cross section, alloying components (Cr, Mo) are added to the steel, 

which moves the continuous cooling temperature (CCT) curves to the right. Microalloying elements 

(Nb, V and Ti) are also used in order to ensure and preserve a fine grain microstructure; however, their 

amount and ratio can strongly and not always positively affect the toughness properties in the different 

HAZ areas [6]. The tempered, fine-grained microstructure results in high toughness at negative 

temperatures (even at -40 ºC); however the welding thermal cycle can be detrimental to this ideal 

microstructure. The outstanding strength and toughness properties of quenched and tempered high 

strength steels cannot be adequately preserved during welding due to the irreversible microstructural 

changes in the HAZ. Cold cracking, softening and the reduction of toughness properties can also happen 

due to the effect of the welding heat input [7]. Controlled heat input is indispensable during welding; 

whilst adjustment of welding parameters has little effect on the toughness reduction, however the HAZ 

width can be minimized. Using advanced welding technologies (e.g. electron beam welding), that 

minimally damages the special microstructure of the base material in the HAZ and ensure a productive 

solution for their joining may have wider application in the future [8].  

In industrial applications gas metal arc welding (GMAW) is the most commonly used welding 

technology; however, the heat input cannot be significantly minimized, since sufficient penetration and 

productivity are important requirements in the industry [9]. The present research aims to investigate a 

possible local post-weld heat treatment solution for the improvement of HAZ properties. In real welded 

joints the HAZ toughness can be analysed by conventional material tests only to a limited extent due to 

the complex microstructure, and thus physical simulators (i.e. Gleeble) were developed for the 

examination of different HAZ areas [10], [11]. The present paper examines the effect of post-weld heat 

treatment on the critical HAZ areas of the quenched and tempered steels. 

2.  Structure of heat-affected zone during fusion welding 

The special structure of HAZ in single and multipass welded joints, including the formation of subzones 

is presented in [12]. In quenched and tempered high strength steels the toughness can significantly 

decrease in the coarse-grained (CGHAZ) and the intercritical zones (ICHAZ) compared to the base 

material. In multipass welded joints the intercritically reheated coarse grained zone (ICCGHAZ) may 

have even a lower toughness than the abovementioned zones. These three areas are considered critical 

in terms of HAZ toughness.  

Next to the fusion line the material will be heated far above Ac3 temperature and therefore 

homogeneous austenite forms. During grain coarsening the peak temperature is above 1100 °C where 

the grains start to exponentially grow in the function of presence of different microalloying elements 

[13]. There are two reasons for the decreased toughness of this zone in quenched and tempered high 

strength steels. First, the grain size can be more than 10 times higher than of the base material (>100 

µm). The reason originates from the alloying elements resulting in a hard, lath martensitic 

microstructure. Therefore in many cases this area has the lowest toughness within the welded joint. 

Besides the weld metal, CGHAZ has the highest risk of cold cracking since the hydrogen can diffuse 

from the fusion line to the brittle, coarse-grained microstructure. 

Further from the fusion line in ICHAZ, where the peak temperature during the thermal cycle is 

between Ac1 and Ac3, the austenitic transformation just partially take place and thus an exceptionally 

heterogeneous microstructure forms. Transformed parts at the boundaries of original grains generally 
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have a higher carbon content, since austenite has higher carbon-dissolving ability in this temperature 

range. In Q+T high strength steels the austenitic parts transform to a more brittle microstructure than 

the base metal, which is mostly martensite. Retained austenite can be often observed near the brittle 

martensitic islands, so these areas are called together M-A constituents. The transformed parts between 

the relatively softened microstructure mean local brittle zones in the welded joint [1] [13].  

In the case of multipass welded joints a combination of CGHAZ and ICHAZ can evolve, when the 

second heat cycle reheats the primer coarse grains between Ac1 and Ac3. In Q+T steels this local zone 

can have the lowest toughness in the welded joint, since the disadvantageous properties of CGHAZ and 

ICHAZ meet here. The toughness of ICCGHAZ is determined by the tempered coarse grained 

martensite and the amount, distribution, type and hardness of austenitized parts. In real welded joints 

the unfavourable properties of ICCGHAZ are less harmful, since this zone just forms locally whilst 

ICHAZ can be found in the whole plate thickness [12]. 

 

3.  Investigated material and the experimental program 

In the present study the highest steel grade of EN 10025-6 standard, S960QL is investigated in the 

aspect of the microstructural changes in the HAZ of GMAW joints. It is important to note that higher 

steel grades are already available on the market, although they have not been included in the governing 

standard yet [2], [8]. The chemical composition of the investigated base material is shown in Table 1 

and the mechanical properties are summarized in Table 2. 

 

Table 1. Chemical composition of the investigated S960QL (m%)  

S960QL 
C Si Mn P S Cr Ni 

0.16 0.23 1.25 0.009 0.001 0.20 0.05 

Mo V Ti Cu Al Nb B N 

0.592 0.042 0.003 0.01 0.056 0.015 0.001 0.0036 

 

Table 2. Mechanical properties of the investigated S960QL base material 

Rp0.2 (MPa) Rm (MPa) A5 (%) CVE-40 ºC (J) 

1014 1053 14 75 

 

Applying the HAZ test on Gleeble the desired heat-affected zone can be precisely and 

homogeneously created in a volume sufficient for further material tests, e. g. Charpy V-notch impact or 

CTOD tests [10]. Although several welding thermal cycle models are available in the QuickSim 

software developed for the simulator, the GSL programs were manually written in our case, using the 

time and temperature values determined by Rykalin-3D model [14]. This model describes the 

temperature field generated by a moving spot-like heat source on the surface of a semi-infinite body. In 

this case 3D thermal conductivity is dominant whilst surface heat transfer (convection) is negligible. 

In our earlier physical simulation tests [15] we found that the toughness in the HAZ decreased sharply 

(almost independently from the applied welding parameters) in the t8/5 cooling time (cooling time 

between 850 and  500 ºC) interval (5-30 s) of conventional arc welding processes. Therefore t8/5 = 15 s 

(the middle value of the previously tested interval) cooling time was selected for simulating the effect 

of post-weld heat treatment on CGHAZ, ICHAZ and ICCGHAZ. Regarding the selection of the peak 

temperatures 1350 ºC (safely under the nil-strength temperature (NST) of the investigated steel where 

the material can not bear any mechanical loading [16]) was set for the CGHAZ simulation in order to 

allow the largest possible grains to form in the HAZ. Related to ICHAZ, 775 ºC was selected based data 

in the literature [10] and previous experiments [15]. In all cases a Tmax = 650 ºC tempering thermal cycle, 

similarly to the high temperature tempering during the base material production, was applied for 

investigating the effect of post-weld heat treatment (PWHT). In industrial practice the arc of GTAW 

(gas tungsten arc welding) equipment can be used for the improvement of fatigue properties of welded 

joints by remelting (or just reheating) the weld-base material transition [17]. The idea was to analyse 
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whether local and relatively short PWHT by arc can have a positive effect on the toughness of the heat-

affected zone. In Figs. 1-3. the determined thermal cycles applied during the HAZ and PWHT physical 

simulations are presented. 

 

   

 Figure 1. Thermal cycle for PWHT of CGHAZ Figure 2. Thermal cycle for PWHT of ICHAZ 

 

 

Figure 3. Thermal cycle for PWHT of ICCGHAZ 

 

The thermal cycles were realized in the centre of 10×10×70 mm specimens, manufactured from the 

15 mm thick base material. Due to the control process of the simulation, K-type thermocouples were 

welded to the surface of the samples and joined to the simulator. Each thermal cycle was simulated on 

six specimens each. From each series five samples were used for the instrumented Charpy V-notch 

impact test and the rest for hardness testing. 

4.  Results and discussion 

4.1.  Scanning electron microscopy (SEM) tests 

A ZEISS EVO MA10 scanning electron microscope was used for the examination; results are illustrated 

in Figs. 4-9. Samples were coated with a thin gold layer in order to increase picture quality due to the 

resin surrounding the specimen. All microscopic tests verified that the desired heat-affected zones were 

simulated. Regarding the CGHAZ, a martensitic microstructure with large (>100 µm) prior austenite 

grain size were measured. In ICHAZ fine M-A islands formed as the result of partial austenitic 

transformation, while the middle of the original grains was tempered. In ICCGHAZ similar 

microstructural changes can be identified with essentially ten-time-larger grains. The tempering of lath 

martensite is shown in Fig 6, while tempered M-A islands can be identified in Figs 8. and 10. 
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 Figure 4. CGHAZ (2% Nital) Figure 5. CGHAZ with PWHT (2% Nital) 

 

   
 Figure 6. ICHAZ (2% Nital) Figure 7. ICHAZ with PWHT (2% Nital) 

  

   
 Figure 8. ICCGHAZ (2% Nital) Figure 9. ICCGHAZ with PWHT (2% Nital) 

4.2.  Hardness tests 

Five hardness measurements were made on the surface of the medium cross section of the samples by a 

Reicherter UH 250 universal hardness tester. The average values and the standard deviations values of 

hardness tests are summarized in Table 3. It may be important to note that the hardness of the base 

material was 335±5 HV10, whilst the governing EN 15614-1 standard allows maximum 450 HV10 for 

the welded joints of Q+T high strength steels. 

 

Table 3. Effect of PWHT on the average hardness 

 

Hardness (HV10) 

CGHAZ ICHAZ ICCGHAZ 

without PWHT 409±6.8 323±5.4 344±7.6 

TPWHT = 650 ºC 346±6.4 298±4.3 328±9.2 

 

10 µm 
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10 µm 

 

10 µm 



6

1234567890‘’“”

11th Hungarian Conference on Materials Science IOP Publishing

IOP Conf. Series: Materials Science and Engineering 426 (2018) 012012 doi:10.1088/1757-899X/426/1/012012

 

 

 

 

 

 

 

From Table 3 it can be seen, that the tempering heat cycle reduced the hardness of all zones. The 

most significant reduction was noticed in CGHAZ, where originally higher than 400 HV10 hardness 

was measured. Due to the PWHT the hardness decreased to the level of base material which can be 

favourable in terms of cold cracking sensitivity. In the case of ICHAZ and ICCGHAZ the hardness 

decreased under the level of the base material, although this softening cannot be considered critical, 

since in multipass welded joints of the same material generally similar hardness values are measured at 

the root side. 

4.3.  Instrumented Charpy V-notch impact tests 

Instrumented Charpy V-notch impact tests (according to EN ISO 14556) were performed for analysing 

the supposed positive effect on toughness of PWHT. Standardized 10×10×55 mm specimens with a V-

notch were manufactured from the Gleeble samples. Measurements were done by a PSD 300 

instrumented impact testing equipment. The absorbed energy values (CVE) with the standard deviations 

(D) are presented in Fig. 10. 

 

 
Figure 10. Results of Charpy V-notch impact test in the different HAZ's 

 

According to EN 10025-6 and EN 15614-1 standards the toughness of the heat-affected zone of 

S960QL should be higher than 27 J at -40 ºC. Due to the 650 ºC tempering cycle the impact energy was 

doubled in CGHAZ despite the large grain size and tripled in ICHAZ. In the case of ICCGHAZ the 

improvement was also significant. By the application of instrumented impact testing the force – 

displacement (F-s) diagrams (Figs. 12 and 14) can be determined, and based on the measured maximum 

force value the impact energy can be divided according to the absorbed energy needed for crack 

initiation (Wi) and crack propagation (Wt) [18]. The reduction of the ratio of Wi compared to the Charpy-

V energy (CVE) means that more energy is absorbed for crack propagation, therefore the toughness 

improves. In the base material crack initiation (Wi) was 25.9%, indicating the high toughness of the 

quenched and tempered microstructure; however, in the investigated HAZ areas this value was 

systematically higher. The average percentage of the absorbed energy for Wi compared to CVE in the 

investigated HAZ areas is summarized in Table 4. 

 

Table 4. Average percentage of the absorbed energy for crack initiation (Wi) compared to CVE 

 without PWHT TPWHT = 650 ºC 

CGHAZ 90% 71% 

ICHAZ 78% 38% 

ICCGHAZ 88% 68% 
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These values verify the positive effect of PWHT on the toughness of critical HAZ areas, especially 

in ICHAZ During the instrumented impact tests the registered force-displacement diagrams at tempered 

ICHAZ included few instable crack propagation stages (from the five specimens three did not include 

any at all). As an example, the determined force-displacement diagrams during the instrumented Charpy 

V-notch impact test of normal and tempered ICHAZ are shown in Figs. 11 and 12. 

  
Figure 11. F-s diagram of instrumented Charpy 

V-notch impact test on ICHAZ 

Figure 12. F-s diagram of instrumented Charpy 

V-notch impact test on ICHAZ with PWHT 

Although the presented PWHT only influences the part of the heat-affected zone that is close to the 

surface, the improvement can be still relevant for the total lifetime of the welded joint. At the root side 

of the multipass welded joints HAZ tempering always automatically happens due to the heat input 

related to the further layers and therefore the tempering effect of filler passes. Because of this, HAZ 

toughness can be mostly critical at the face side, where the highest hardness values are generally 

measured. As could be seen above, a local tempering heat cycle can significantly increase the toughness 

at this crucial part of the HAZ, which can be also combined with the improvement of fatigue properties 

of the welded joints. 

 

5.  Conclusion 

By applying post-weld heat treatment the toughness in the heat-affected zone of quenched and tempered 

high strength steels can be significantly improved. After welding at the HAZ a local and short heat input, 

which should be strictly kept under A1 temperature, can effectively increase the toughness of CGHAZ, 

ICHAZ and ICCGHAZ. The highest improvement can be expected in ICHAZ, where the toughness 

characteristics approached the properties of the base material during the physical simulation 

experiments. 
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