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Abstract.  Twin-screw expanders offer a high potential for energy conversion in the lower and 
medium power range, for instance in Rankine cycle systems for exhaust heat recovery.  With the 
aim of minimising internal leakages within the expander and lubricating moving machine parts, 
an auxiliary liquid can be carried with the main flow or liquid working fluid can be fed to the 
twin-screw expander.  Moreover, the operation of twin-screw expanders in Rankine cycle 
systems at high liquid mass fractions and in trilateral flash cycles is predicted to be a very 
promising application for expanders in lower power ranges.  Thus, a fundamental understanding 
of the operation of liquid-flooded twin-screw expanders is mandatory.  This paper presents 
results of an experimental investigation into a water-flooded twin-screw expander prototype 
SE 51.2 designed at the Chair of Fluidics at TU Dortmund University.  On the one hand, the 
aspect of a two-phase working fluid is discussed considering integral characteristic numbers such 
as mass flow, delivery rate, and effective isentropic efficiency.  On the other hand, in order to 
explain the influence mechanisms of a two-phase working fluid on the operating behaviour of 
the twin-screw expander, indicator diagrams are recorded by means of high-resolution pressure 
transmitters to determine indicated power.  Hence, mechanical and hydraulic losses, indicated 
isentropic efficiency, and mechanical efficiency of the twin-screw expander can be calculated.  
In order to determine the influence of the narrow clearance on the hydraulic losses and the 
clearance sealing effect in terms of a two-phase working fluid, a systematic variation of the rotor-
tip clearance height is carried out.  As a result of the investigations, a water surge at the rotor tip 
is proved to be a significant mechanism affecting hydraulic losses in a water-flooded twin-screw 
expander. 

1.  Introduction 
Due to the growing shortage of non-renewable fossil fuel reserves and the consequential increase in 
primary energy costs, underdeveloped energy potentials are increasingly moving into the focus of 
economic interest.  Available heat sources in the field of decentralised energy systems of small and 
medium power ranges from 3 kW to 1.5 MW [1, 2]—such as industrial exhaust gases or waste heat in 
vehicle engines, geothermal or solar thermal energy—can be converted into usable mechanical power 
by means of expanders or turbines within a Rankine cycle system. 

In this context, twin-screw expanders in Rankine cycles possess clear advantages compared with 
turbomachines or even other volumetric expander concepts, being capable of economically transforming 
small volume flows at relatively large pressure ratios [3].  In general, twin-screw machines are 
characterised by relatively high energy density and efficiency, advantageous part load behaviour, and a 
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rather simple design [4].  Furthermore, twin-screw expanders in (organic) Rankine cycles are suitable 
for wet-vapour operation; thus, an overheating system is not essential [5].  On the one hand, the number 
of system components and the overall costs can be reduced.  On the other hand, liquid in twin-screw 
expanders could be beneficial with regard to their operation.  The auxiliary fluid also reduces noise 
emissions and thermal stress within the machine parts and seals structurally necessary machine 
clearances [6]. 

Investigations into water- and oil-injected twin-screw expanders with timing gears were carried out 
by Zellermann [7].  Kauder and Zellermann [8] reported a significant increase of hydraulic friction 
losses in terms of oil-injection at high rotor tip-speeds.  Hence, the operating range of wet-running screw 
machines taking hydraulic losses into account is usually restricted to a maximum rotor tip-speed of 
40 m∙s-1 [4].  Without limitations in the rotor tip-speed, performance reduction due to oil shearing in and 
at the machine clearances exceeds the positive sealing effect of the injected liquid.  In this context, 
Harling [6] has carried out extensive experimental studies on the distribution of the injected oil in a 
twin-screw compressor, considering the oil-surge theory of Kauder [9].  Here, losses as a result of 
momentum exchange between the oil and the rotor surface have been investigated.  In order to determine 
hydraulic friction losses in screw expander clearances using an auxiliary liquid, an analytical approach 
was presented by Gräßer and Brümmer with regard to water [10] and oil [11, 12].  In [13], Vasuthevan 
and Brümmer proved by means of numerical simulations that hydraulic losses generated by a water 
surge at the rotor-tip are more significant compared to water friction within the rotor-tip clearance.  In 
[14], the operational behaviour of a small oil-flooded twin-screw expander in an organic Rankine cycle 
system has been experimentally and theoretically investigated.  Kliem [15] examined a twin-screw 
expander application in a trilateral flash cycle theoretically and experimentally.  Here, overheated water 
is injected into the working chamber where it expands and evaporates.  According to Ohman and 
Lundqvist [1], this application of twin-screw expanders is predicted to be a promising approach in the 
medium and low power operating range.  In this context, a method for the theoretical investigation into 
twin-screw expanders in trilateral flash cycles has been presented by Vasuthevan and Brümmer [16].  
With regard to thermal deformation, Svigler et al. [17] reported that under water-injected conditions, 
the thermal deformation of the rotor flank in twin-screw compressors corresponds to the manufacturing 
tolerance magnitude for ground rotors. 

Hereinafter, the results obtained from pursuing experimental investigations into the operation of a 
water-flooded twin-screw expander based on the studies presented in [18] and [19] are discussed.  In 
[18], the effect of water-flooded operation has been presented integrally from an energetic point of view 
considering effective isentropic efficiency and delivery rate of the test expander.  At part load operation 
and at low rotor tip-speeds in particular, it has been demonstrated that the water-flooded compared to 
the dry-running twin-screw expander reveals higher effective isentropic efficiency.  At high rotor tip-
speeds however, expander efficiency declines with increasing amounts of water, since hydraulic losses 
become more dominant.  In [19], indicator diagrams were presented in order to quantify mechanical 
power losses in the twin-screw expander and to identity the main influence physical mechanisms with 
respect to water-flooded operation.  Generally, mechanical power losses in twin-screw expanders can 
be attributed to friction losses in the grease-lubricated bearings and in the rotor contact as well as to 
acceleration of the auxiliary fluid and hydraulic friction in the clearances and in the water surge at the 
rotor tips.  Within the framework of the following study, a methodical variation of the rotor-tip clearance 
height is carried out in order to detect its impact on hydraulic losses and clearance sealing in terms of 
water in the working chamber. 

2.  Experimental setup 
A detailed description of the experimental setup within the framework of the investigations has been 
presented in [18] and [19].  A 3D model of the test twin-screw expander prototype SE 51.2 and the 
positions of the high-resolution pressure indication transmitters are illustrated in figure 1.  SE 51.2 is a 
twin-screw expander prototype without timing gears.  The transmission of torque occurs directly via 
contact between the rotor flanks.  The screw rotors are hardened and have a tough tungsten 
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carbide/carbon (WC/C) wear-protection coating, so seizure can be avoided in dry-running or water-
flooded operation.  Both fixed and loose bearing sets are grease lubricated, so no oil supply is necessary.  
Details about the expander geometry parameters are listed in table 1.  For the purposes of the 
experimental investigations, the rotor-tip clearance height has been varied in order to analyse how 
hydraulic losses change and which are the consequences on the reduction of internal leakages in the 
expander.  The clearance height variation has been achieved by increasing the rotor bore diameter 
keeping any further expander geometry parameters constant. 

Figure 1. Positions of pressure indication transmitters (0…6), inlet and outlet area, as well as volume 
curve of the test screw expander SE 51.2 including ranges of male rotor rotational angle corresponding 
to each pressure transmitter. 

Table 1. Parameters of the test screw expander SE 51.2. 

designation unit male rotor (MR) female rotor (FR)
number of lobes ݖ [-] 3 5
diameter ݀ [mm] 71.8 67.5 
rotor lead ݏ  [mm] 181.8 303 
wrap angle	߮ [°] 200 -120 
rotor length ݈ [mm] 101 
rotor profile [-] modified asymmetric SRM 
axis-centre distance ܽ [mm] 51.2 
internal volume ratio ݒ௜ [-] 2.5
displaced volume per male rotor rotation ܸ [cm3] 286 
front clearance height ݄௙௖,௛௣ (high pressure) [mm] 0.1 
front clearance height ݄௙௖,௟௣ (low pressure) [mm] 0.17 
rotor-tip (housing) clearance height ݄௛௖ [mm] 0.08, 0.16, 0.24 

The relevant measurement devices installed in the test rig and the twin-screw expander are listed in 
table 2.  To record the indicator diagrams of the test twin-screw expander, two different piezoresistive 
sensor types are installed flush with the rotor bore surface and on the high-pressure front side.  The 
pressure transducers of the series M5 manufactured by “KELLER AG für Druckmesstechnik” at 
position 0, 1, and 6 record the absolute static pressure in the inlet port (position 0), in the working 
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chamber in the range of rotational angle between 85° and 130° (position 1), and during the fluid 
discharge on the low-pressure side of the expander (position 6).  With regard to the manufacturer data 
sheet, a natural frequency of more than 50 kHz can be expected.  At positions 2 to 5, XTM-190 pressure 
transducers manufactured by “Kulite Semiconductor Products, Inc” with natural frequency higher than 
425 kHz are installed.  Hence, no acoustic or vibration issues at the pressure metering point with regard 
to eigenfrequencies are expected.  Depending on pressure and temperature, the sensitivity of each XTM-
190 sensor was calibrated in order to increase its accuracy.  Due to a relatively high temperature related 
zero point offset of the XTM-190 sensors, only the relative change in pressure to a reference pressure 
level is considered.  For this reason, the pressure difference between two adjacent transducers within 
their overlapping scope (figure 1) is set to zero and the high-resolution static pressure at position 6 is 
used as a starting reference pressure level. 
 

Table 2. Measuring range and accuracy of installed measurement devices. 

parameter range accuracy type (manufacturer) 

chamber pressure 0 ݌ to 10∙105 Pa (absolute) 
±0.2 % FS*

(linearity) 
series M5 (KELLER AG für 

Druckmesstechnik) 

chamber pressure 0 ݌ to 17∙105 Pa (absolute) 
±103 Pa (linearity 

calibrated) 
XTM-190 (Kulite 

Semiconductor Products, Inc.) 
inlet pressure ݌௜ 0 to 6∙105 Pa (relative) ±0.1 % FS* ATM.1ST (STS) 

temperature 300…185- ߴ °C 
±1 °C 

(-40…133 °C) 
insulated thermocouples 

type T 
torque ܯெோ ±20 Nm ±0.1 % FS* ETH DRLF-II-n 

(ETH-messtechnik) rotational speed ݊ெோ max. 19,000 min-1 - 

air mass flow ሶ݉ ௔ 
max. ≈ 3300 kg∙h-1

(at ݌௜ = 5.5∙105 Pa) 
±0.35 % o.r.** 

Promass 83F (DN40) 
(Endress+Hauser) 

water volume flow max. 8.2 l∙min-1 
±(0.4 % o.r.** 
+ 0.02 % FS*) 

ProcessMaster300 (ABB) 

*FS–full scale; **o.r.–of reading 
 
With regard to the pressure indication, a rotational angle range between 130° and 140° cannot be 

covered due to lack of space in the casing, so the pressure has to be estimated.  Preliminary analysis of 
the recorded pressure revealed that a linear pressure distribution in the missing range is qualitatively and 
quantitatively sufficiently accurate.  At low rotor speeds, the pressure transmitter at position 0 is 
assumed to represent the chamber pressure from the beginning of the working cycle at rotational angle 
of 45° up to rotational angle of 85° as indicated in figure 1.  In this way, the assumed chamber pressure 
is mapped with regard to an ideal chamber filling without pressure drop over the inlet.  In theory, this 
results in an upper limit for the converted work within this working cycle range.  At higher rotational 
speeds, a different approach to map the chamber pressure profile in this section is applied.  Here, linear 
pressure increase starting from the outlet and ending at the pressure level of the transmitter at position 1 
is assumed.  This method is more appropriate with respect to increasing inlet throttling losses at higher 
rotor speeds or increasing amount of injected water.  Therefore, the pressure level and the indicated 
work within the missing range of the indicator diagram are expected to be lower than the real one during 
the chamber growth.  This approach represents a lower limit for the indicated work within the first 40° 
of chamber development the range of rotational angle between 45° and 85°. 

Within the framework of this experimental investigation, both the system and the twin-screw 
expander operating parameters were varied.  Water was injected into the high-pressure domain at a 
superficial water temperature of ߴ௜,௪ ≈ 60 °C at constant air inlet pressures of ݌௜  = 3∙105 Pa, 
 ௜,௔ = 90 °C.  Outlet pressureߴ ௜  = 5∙105 Pa as well as superficial air temperature of݌ ,௜  = 4∙105 Pa݌
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corresponds to ambient conditions at ca. ݌௢ ≈ 1∙105 Pa.  The resulting mixture temperature at the 
expander inlet is nearly ߴ௜ ≈ 50 °C depending on water volume flow and expander rotational speed. 

In the style of steam or vapour mass fraction, the amount of injected water into the expander inlet 
port is represented by the dryness fraction ݔ relating air mass flow to the overall air and water mass 
flow: 
 

ݔ    ൌ
ሶ݉ ௔

ሶ݉ ௔ ൅ ሶ݉ ௪
. (1)

 
Here, measured air mass flow ሶ݉ ௔ (Coriolis mass flow meter) can be considered as dry air, since a 
refrigerant type dryer is used after air compression.  Water volume flow is recorded by means of an 
electromagnetic flow-metering device.  Regarding water temperature to ambient conditions, water 
density and mass flow ሶ݉ ௪ can be determined.  Dryness fraction of 1 = ݔ corresponds to a dry-running 
operation and 0 < 1> ݔ to the two-phase flow in water-flooded operation.  Dryness fraction ݔ is varied 
in the range between 1.0 and 0.4.  For water injection, two nozzle sizes are used at two adjacent water 
flow ranges with respect to a satisfactorily homogeneous water injection quality in the expander inlet 
domain.  The maximum expander rotational speed is ݊ெோ  = 18,000 min-1 which equals a male rotor tip-
speed of ݑெோ = 67.7 m∙s-1. 

3.  Characteristic numbers 
Using characteristic numbers, physical processes or the operation of machines can be quantitatively 
analysed and compared with each other.  In the following analysis, different characteristic numbers are 
used to explain the relevant effects on the operation of the test twin-screw expander. 

3.1.  Delivery rate 
Delivery rate ߣ௅ is a characteristic number that quantifies mass loss mechanisms such as internal or 
external leakages, throttling losses during the chamber filling, or thermal effects within a displacement 
machine.  Taking the actual measured air mass flow ሶ݉ ௔ and the theoretical air mass flow ሶ݉ ௧௛ of the 
twin-screw expander into account, delivery rate is defined as: 
 

௅ߣ    ൌ
ሶ݉ ௔
ሶ݉ ௧௛
. (2)

 
Here, the theoretical mass flow ሶ݉ ௧௛ is referred to dry-air density ߩௗ௔,௜ in the inlet domain taking the 
chamber volume at the begin of the internal expansion	 ௧ܸ௛,௘௫ (chamber volume at male rotor rotational 
angle of 201° in figure 1), the male rotor speed	݊ெோ, and the number of the male rotor lobes	ݖெோ into 
account: 
 
   ሶ݉ ௧௛ 	ൌ ௗ௔,௜ߩ ∙ ௧ܸ௛,௘௫ ∙ ݊ெோ ∙ ெோ. (3)ݖ

 
The chamber volume displaced by liquid can be ignored due to a relatively high volume fraction of air.  
As already mentioned in [19], considering a homogeneous two-phase mixture in the working chamber, 
air volume fraction is more than 98.5 % even at the lowest air mass flow and highest water flow.  Thus, 
௧ܸ௛,௘௫ refers to the working chamber volume after completing the chamber filling.  Furthermore, dry air 

is considered as an ideal gas and its density ߩௗ௔,௜ is determined by means of the calculated subcooled 
temperature after water was injected.  In terms of delivery rate, measured air mass flow ሶ݉ ௔ does not 
consider evaporated water steam with respect to saturated humid air after water injection, since the 
Coriolis mass flow meter is installed upstream of the water injection nozzle.  In some cases, at high 
temperature levels and low pressure at the same time, steam fraction has to be taken into account, since 
it significantly increases.  Within the following investigations, steam mass flow increases to a level of 
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up to 3.2 % of metered air mass flow at the lowest inlet pressure and dryness fraction.  Since steam mass 
flow is not measured by the Coriolis flow meter, an additional decrease of delivery rate (section 3.1) of 
a maximum of 3.2 % may arise at some operating points. 

3.2.  Indicated and effective isentropic efficiency 
Indicated and effective isentropic efficiency (ߟ௜,௦ and ߟ௘,௦) reveal the energetic potential of the twin-
screw expander considering different loss mechanisms.  Here, indicated or effective power is related to 
the isentropic potential of the working fluid considering the inlet and outlet conditions.  With respect to 
water-flooded operation, an isentropic change in state represents the maximum energy available in the 
two-phase working fluid.  Hence, indicated isentropic efficiency is defined as: 
 

			 ௜,௦ߟ ൌ
௜ܲ

ሶ௦ܪ∆
(4)

 
and effective isentropic efficiency respectively as: 
 

			 ௘,௦ߟ ൌ
௘ܲ

ሶ௦ܪ∆
. (5)

Indicated power ௜ܲ can be calculated by means of the time-dependent working chamber pressure ݌ and 
volume ܸ, male rotor rotational speed ݊ெோ, and number of male rotor lobes ݖெோ as follows: 
 

			 ௜ܲ ൌ െ݊ெோ ൉ ெோݖ ൉ ර݌ ൉ ܸ݀. (6)

 
Effective power ௘ܲ results from the recorded male rotor rotational speed ݊ெோ and torque ܯெோ as: 
 
			 ௘ܲ ൌ 2 ൉ ߨ ൉ ݊ெோ ൉ .ெோܯ (7)

 
Isentropic enthalpy flow ∆ܪሶ௦ for a homogeneous mixture is defined as the product of dry-air mass 
flow	 ሶ݉ ௗ௔ and the specific isentropic enthalpy difference for humid air ݄߂ଵା௫,௦ between expander 
outlet (݋) and inlet (݅) as follows: 
 
			 ሶ௦ܪ∆ ൌ ሶ݉ ௗ௔ ∙ ଵା௫,௦݄߂ ൌ ሶ݉ ௗ௔ ∙ ൫݄ଵା௫,௦,௢ െ ݄ଵା௫,௜൯. (8)

 
In this context, the specific enthalpy ݄ଵା௫ for a homogeneous humid-air-water mixture in 
thermodynamic equilibrium can be calculated with reference to water load ܺ [20].  Water load ܺ 
represents the ratio of water mass flow ሶ݉ ௪ to dry-air mass flow	 ሶ݉ ௗ௔: 
 

			 ܺ ൌ
ሶ݉ ௪
ሶ݉ ௗ௔
. (9)

 
Since water load of the pressurised and preheated air at expander inlet upstream of water injection is 
negligibly low, dry-air mass flow	 ሶ݉ ௗ௔ can be related to measured air mass flow	 ሶ݉ ௔.  The specific 
enthalpy of unsaturated humid air (ܺ < ܺ௦௔௧) is defined as: 
 
			 ݄ଵା௫ ൌ ܿ௣,ௗ௔ ∙ ߴ ൅ ܺ ∙ ൫ݎ௪ ൅ ܿ௣,௪௦ ∙ .൯ߴ (10)
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Here, water load ܺ௦௔௧ corresponds to humid air at a relative humidity of 100 %.  The specific enthalpy 
of saturated humid air (ܺ ≥ ܺ௦௔௧) with reference to water in the mixture can be calculated as: 
 
			 ݄ଵା௫ ൌ ܿ௣,ௗ௔ ∙ ߴ ൅ ܺ௦௔௧ ∙ ൫ݎ௪ ൅ ܿ௣,௪௦ ∙ ൯ߴ ൅ ሺܺ െ ܺ௦௔௧ሻ ∙ ܿ௪ ∙ 	.ߴ (11)

 
For temperatures 0 > ߴ °C, the calculation of the specific humid air enthalpy is referred to ice 
condensation as follows: 
 
			 ݄ଵା௫ ൌ ܿ௣,ௗ௔ ∙ ߴ ൅ ܺ௦௔௧ ∙ ൫ݎ௪ ൅ ܿ௣,௪௦ ∙ ൯ߴ െ ሺܺ െ ܺ௦௔௧ሻ ∙ ሺݎ௜௖௘ െ ܿ௜௖௘ ∙ 	.ሻߴ (12)

 
The constant fluid properties required to calculate the enthalpy of the humid-air-water mixture are 

listed in table 3.  Specific enthalpy of humid air at the expander inlet can be calculated by means of the 
recorded inlet temperature ߴ௜ and pressure	݌௜.  Isentropic fluid mixture temperature and enthalpy at the 
expander outlet is calculated with regard to a constant specific entropy at the expander inlet and outlet 
according to [20]. 
 

Table 3. Constant fluid properties for the fluid state calculation of humid air in 
thermodynamic equilibrium [20]. 

designation unit value 
dry-air heat capacity ܿ௣,ௗ௔ [J∙kg-1∙K-1] 1004.6  
water-steam heat capacity ܿ௣,௪௦ [J∙kg-1∙K-1] 1863 
liquid water heat capacity ܿ௪ [J∙kg-1∙K-1] 4185 
triple temperature ߴ௧௥ [°C] 0.01 
ice heat capacity ܿ௜௖௘ at ߴ௧௥ [J∙kg-1∙K-1] 2070 
specific solidification enthalpy ݎ௜௖௘ at ߴ௧௥ [kJ∙kg-1] 333.4  
specific vaporisation enthalpy ݎ௪ at ߴ௧௥ [kJ∙kg-1] 2500.9  

 

3.3.  Mechanical efficiency 
Mechanical efficiency ߟ௠ is a characteristic number that quantifies mechanical power losses in twin-
screw expanders relating effective and indicated power to each other: 
 

௠ߟ    ൌ ௘ܲ

௜ܲ
. (13)

 
In the twin-screw expander investigated, mechanical power losses result from the contact between both 
screw rotors, within the bearings and sealing elements, as well as from hydraulic losses considering 
acceleration and hydraulic friction of the injected auxiliary fluid in and at the clearances and rotor 
surfaces.  Mechanical power loss ߔሶ  can be calculated as follows: 
 
			 ሶߔ ൌ ௜ܲ െ ௘ܲ. (14)

 
Hence, mechanical efficiency of the twin-screw expander can be calculated as: 
 

			 ௠ߟ 	ൌ
௘ܲ

௜ܲ
ൌ ௜ܲ െ ሶߔ

௜ܲ
ൌ 1 െ

ሶߔ

௜ܲ
. (15)
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By means of equation (4) and equation (5), mechanical efficiency ߟ௠ can be also determined from the 
ratio of effective isentropic to indicated isentropic efficiency as: 
 

௠ߟ    ൌ
௘,௦ߟ
௜,௦ߟ

. (16)

4.  Results 
In this section, results from the experimental investigations into the water-flooded twin-screw expander 
considering effects of rotor-tip clearance height variation are presented.  First, indicator diagrams are 
discussed revealing the impact of different clearance situations on the working chamber pressure during 
a working cycle under dry-running and water-flooded conditions.  After that, expander operating maps 
based on characteristic numbers are used to quantify the arguments discussed initially. 

4.1.  Indicator diagrams 
Recording the chamber pressure during a working cycle and generating indicator diagrams is a common 
method to evaluate the available fluid energy within the working chamber of a reciprocating machine 
and respectively of a twin-screw expander.  In this way, indicated power takes throttling losses, leakages, 
under- and overexpansion, as well as the interaction between the working and auxiliary fluid and the 
working chamber boundaries into account.  Moreover, the different influence mechanisms can be 
quantitatively illustrated by variation of the expander operation parameters. 

In order to illustrate the influence of water on the chamber pressure at different rotor-tip clearance 
heights, indicator diagrams at a high and a low male rotor tip-speed are presented in figure 2 and figure 3.  
Each operating point corresponds to a constant inlet pressure and superficial air and water temperatures.  
Generally, at both rotor tip-speed levels, water in the working chamber mostly initiates an increase in 
chamber pressure during internal expansion and a greater indicated power respectively (except for rotor-
tip clearance height of 0.08 mm in figure 3).  As explained in [19], this effect can be primarily traced 
back to the extensive heat exchange between water and the expanding gaseous fluid, so the polytropic 
expansion exponent is reduced compared to a pure gaseous operation.  Additionally, a sealing effect 
resulting from water in the clearances is expected, while this can be only partially proved by means of 
the indicator diagrams. 

 

 

Figure 2. Indicator diagrams at a male rotor tip-speed of 67.7 m·s-1, 
an inlet pressure of 4·105 Pa, a superficial air temperature of 90 °C, 
and a superficial water temperature of 60 °C; dryness fraction: 1 and 
0.5; rotor-tip clearance height: 0.08 mm, 0.16 mm, and 0.24 mm. 
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Generally, at high rotor tip-speeds, the internal leakages related to the expander air mass flow can be 
neglected, so no significant impact of clearance height on the indicator diagrams is expected.  In fact, 
inlet throttling and hydraulic losses become dominant.  In figure 2, a significant drop in pressure during 
the chamber filling can be observed under water-flooded conditions due to increasing inlet throttling.  
The main reason for the pressure increase during the internal expansion at high rotor tip-speeds is the 
heat flow from the liquid phase into the gaseous fluid.  Hence, overexpansion can be avoided.  In a rotor-
related coordinate system considering the clearance sealing effect, it is more likely to have a boundary-
driven (Couette) water back-flow from the leading chamber as a consequence of a relative motion 
between the rotor tip and the housing boundary.  The pressure-driven (Poiseuille) water flow plays a 
subordinate role and merely reduces the Couette water flow from the leading chamber.  At lower dryness 
fractions, a liquid surge is expected to form at the rotor-tip clearance outlet on the leading chamber side.  
On the one hand, this would reduce the clearance cross-section for the gaseous flow and seal the 
clearance (which is in fact not a dominant effect at higher rotor tip-speeds).  Clearance sealing in terms 
of water-flooded operation is discussed in section 4.2 using delivery rate as defined in equation (2).  On 
the other hand, hydraulic losses become dominant.  In section 4.3, hydraulic friction losses resulting 
from liquid friction in the clearances and in the water surge at the rotor tip in the leading working 
chamber are analysed by means of mechanical power loss and mechanical efficiency. 

 

 

Figure 3. Indicator diagrams at a male rotor tip-speed of 3.8 m·s-1, an 
inlet pressure of 4·105 Pa, a superficial air temperature of 90 °C, and 
a superficial water temperature of 60 °C; dryness fraction: 1 and 0.5; 
rotor-tip clearance height: 0.08 mm, 0.16 mm, and 0.24 mm. 

 
In contrast, at low rotor tip-speeds, internal leakage becomes more relevant, while the influence of

inlet throttling declines or disappears as illustrated in figure 3.  Due to internal leakage, higher pressure
is revealed in the working chamber during the internal expansion unlike at high rotor tip-speed in
figure 2.  A chamber refilling is the result.  In terms of inlet throttling, no significant pressure drop as a
function of clearance height and only a minor influence of dryness fraction on chamber filling are
observed.  Under water-flooded conditions, expander operation leads to less significant boundary-driven
(Couette) water flow in the clearances, so now the pressure-driven (Poiseuille) water flow predominates.
For different clearance heights and approximately comparable pressure difference at the rotor tip, the
pressure-driven water clearance volume flow toward the leading chamber increases for greater clearance
cross-sections.  Therefore, less water might remain at the clearance inlet to effectively seal the clearance.
In this context, at a clearance height of 0.08 mm in figure 3, the clearance sealing in the water-flooded
expander is relatively effective and overshadows the heat exchange effect.  Thus, the pressure in the
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chamber declines under the levels seen in dry-running operation.  At a clearance height of 0.16 mm, a
slight decrease in sealing effect can be observed, since the pressure-driven (Poiseuille) water volume
flow in the rotor-tip clearance increases.  Moreover, heat exchange in the leading chamber intensifies
due to the increased amount of water.  Eventually, the lowest sealing effect can be detected at a clearance
height of 0.24 mm, resulting in the greatest air and water mass and, thus, enthalpy flow into the leading
chamber under water-flooded conditions.  Here, a chamber pressure increase can be detected compared
to dry-running operation due to a maximum amount of water and heat flow from water to air respectively
in the expanding working chamber. 

4.2.  Mass flow and delivery rate 
In figure 4, expander air mass flow and delivery rate are illustrated as functions of the male rotor tip-
speed at different dryness fractions.  As expected, expander air mass flow increases at higher rotor tip-
speeds under dry-running and water-flooded conditions.  Reducing dryness fraction, expander air mass 
flow declines due to reduced internal leakages, increased heat flow from water into air, or greater inlet 
throttling losses depending on the rotor tip-speed.  Since, according to [18], the inlet temperature of the 
two-phase mixture depends on the amount of water, lower dryness fraction results in higher inlet 
temperatures and lower air inlet density, since heat flux from water into the gaseous working fluid 
increases.  As a consequence, expander air mass flow may decline depending on dryness fraction, too.  
To quantify the sealing and inlet throttling effects, delivery rate is considered.  At a fixed low rotor tip-
speed, a significant drop in delivery rate as a consequence of declining dryness fraction and, hence, 
increasing clearance sealing effect, can be perceived.  In contrast, at a constant high rotor tip-speed, 
delivery rate drops mainly due to increasing inlet throttling in terms of water-flooded operation as 
demonstrated in figure 2.  As mentioned in section 3.1, an additional decrease in air mass flow and 
delivery rate due to water steam in the saturated gaseous phase of the two-phase mixture results from 
water-flooded operation.  Nevertheless, at the lowest dryness fraction considered, air mass flow 
decreases not more than 3.2 % at the lowest and 2.2 % at the highest inlet pressure investigated.  
Therefore, this effect is neglected within the framework of this study. 
 

 

Figure 4. Expander air mass flow and delivery rate depending on male 
rotor tip-speed at an inlet pressure of 4·105 Pa, a superficial air 
temperature of 90 °C, a superficial water temperature of 60 °C, and a 
rotor-tip clearance height of 0.08 mm; dryness fraction: 1, 0.9, 0.7, 0.5, 
and 0.4. 
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In figure 5, the impact of different rotor-tip clearance heights on the expander air mass flow and 
delivery rate is presented for a constant dryness fraction of 0.5.  At low rotor tip-speeds and increasing 
clearance height, the sealing effect decreases due to increasing pressure-driven (Poiseuille) water 
volume flow in the high-pressure rotor-tip clearances, so expander air mass flow and delivery rate 
increase.  Up to a rotor tip-speed of about 35 m∙s-1, the sealing effect of the middle (0.16 mm) compared 
to the lowest (0.08 mm) clearance height increases continuously according to expander air mass flow 
and delivery rate.  Then, sealing becomes maximum as expander air mass flow and delivery rate at both 
clearance heights are identical.  As explained in section 4.1, this fact can be traced back to the boundary-
driven (Couette) water flow providing more liquid to seal the clearance cross-section at rising rotor tip-
speed.  As a result of the larger clearance cross-section at a clearance height of 0.24 mm in relation to 
0.08 mm and 0.16 mm, the sealing effect appears to be relatively inefficient. 

 

 

Figure 5. Expander air mass flow and delivery rate at a male rotor tip-
speed of 67.7 m·s-1, an inlet pressure of 4·105 Pa, a superficial air 
temperature of 90 °C, a superficial water temperature of 60 °C, and a 
dryness fraction of 0.5; rotor-tip clearance height: 0.08 mm, 0.16 mm, 
and 0.24 mm. 

4.3.  Mechanical power loss and expander efficiency 
Hereinafter, to analyse the influence mechanisms on the operation of the test twin-screw expander from 
energetic point of view, mechanical power loss and mechanical efficiency respectively as well as 
indicated and effective isentropic efficiency are considered.  Mechanical power loss and different 
efficiencies depending on rotor tip-speed and clearance height under dry-running and water-flooded 
conditions are illustrated in figure 6.  For dry-running and water-flooded operation, mechanical power 
loss increases exponentially as a function of male rotor tip-speed.  At a dryness fraction of 1, frictional 
losses in the bearings and in the rotor contact account for the entire mechanical power loss.  Under 
water-flooded conditions, hydraulic shear stress in the narrow clearances and in the water surge at the 
rotor tip contribute additionally to the overall mechanical power loss.  Within the framework of the 
experimental investigation, mechanical power losses with regard to the water flow in the clearances and 
the water surge can only be considered integrally.  Here, compared to dry-running operation, mechanical 
power losses in terms of a water-flooded expander significantly increase at each rotor-tip clearance 
height. 

In this context, hydraulic losses at the rotor tip develop differently depending on the rotor position 
and the applied pressure difference between two adjacent working chambers.  On the one hand, during 
the chamber filling, a pressure-driven (Poiseuille) water flow from the high-pressure to the expanding 
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working chamber inhibits the forming of a water surge considering low rotor tip-speeds, so hydraulic 
losses can be avoided.  Moreover, the Poiseuille water flow drives the rotor by transferring momentum 
to the rotor tip and contributes to the expander power, since both pressure-driven water flow and rotor-
tip motion work in the same direction.  Increasing rotor tip-speed results in higher boundary-driven 
(Couette) against the pressure-driven (Poiseuille) water flow.  As a consequence, the effect of the 
Poiseuille water flow declines, clearance water flow stagnates, and a water surge starts forming at the 
rotor tip in the leading working chamber after the Couette water flow rate becomes higher than the 
pressure-driven flow.  At this turning point, the water surge at the high-pressure rotor-tip clearances 
might reveal a maximum size.  A further increase in rotor tip-speed provides higher boundary-driven 
(Couette) water flow from the leading into the following chamber, so the water surge size declines.  On 
the other hand, at low pressure levels during a working cycle, boundary-driven (Couette) water flow 
dominates especially at high rotor tip-speeds.  In terms of under-expansion at low rotor tip-speeds, a 
pressure-driven (Poiseuille) flow reduces the boundary-driven (Couette) water flow, which initiates an 
increase in the water surge size.  Nevertheless, the absolute hydraulic loss is relatively low due to lower 
rotor tip-speed.  In this context, hydraulic friction in the clearances and with respect to the water surge 
have been analysed separately by means of theoretical investigations in [12] and [13].  In [13], hydraulic 
losses generated by the water surge at the rotor tip are proved to be more significant compared to water 
friction within the rotor-tip clearances. 
 

 

Figure 6. Mechanical power loss, mechanical efficiency, indicated isentropic efficiency, and effective
isentropic efficiency depending on male rotor tip-speed at an inlet pressure of 4·105 Pa, a superficial air
temperature of 90 °C, and a superficial water temperature of 60 °C; dryness fraction: 1 and 0.5; rotor-
tip clearance height: 0.08 mm, 0.16 mm, and 0.24 mm. 
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in relation to the clearance cross-section, so less water remains at the rotor-tip in the leading chamber 
and the water surge declines or disappears completely.  At the same time, hydraulic shear stress within 
the narrow rotor-tip clearances declines due to increased clearance height that additionally contributes 
to less friction at the low-pressure clearances or less drive momentum at the clearances corresponding 
to higher pressure levels.  Due to the smaller dimensions of the high-pressure compared to the low-
pressure rotor-tip clearances, hydraulic losses due to water surge might significantly overshadow the 
drive effect in terms of a Poiseuille water flow at the high-pressure rotor-tip clearances. 

Relating mechanical power losses to the available energy potential of the fluid in the working 
chamber, no substantial change in mechanical efficiency due to the lack of hydraulic losses at dry-
running operation can be observed as a function of rotor tip-speed (figure 6).  Considering a two-phase 
working fluid at low rotor tip-speeds, no significant influence of water on mechanical efficiency 
compared to dry-running operation can be detected, either.  In contrast, at constant dryness fraction of 
0.5, mechanical efficiency declines at increasing rotor tip-speed in consequence of rising hydraulic 
losses as explained before.  Greater rotor-tip clearance heights reveal higher mechanical efficiency levels 
due to declining size of the water surge and reduced liquid shear stress in the rotor-tip clearances. 

In order to quantify different loss mechanisms relative to the available two-phase working fluid 
potential of the twin-screw expander in figure 6, indicated and effective isentropic efficiency are 
presented.  Considering indicated isentropic efficiency at rising male rotor tip-speed, increases can be 
identified under dry-running and water-flooded conditions due to the reduced influence of clearance 
flows on expander operation.  Moreover, under-expansion is reduced and the expander operation 
approaches the design operation conditions when chamber pressure at the end of the expansion equals 
the discharge pressure.  At highest rotor tip-speeds in dry-running operation, indicated isentropic 
efficiency declines as a consequence of overexpansion and increasing inlet throttling losses.  An 
exception is seen for a rotor-tip clearance height of 0.24 mm where the indicated isentropic efficiency 
remains relatively constant for dry-running and water-flooded operation due to the slightly lower 
overexpansion, as presented in figure 2, resulting from the highest internal leakages. 

Comparing dry-running and water-flooded operation with each other, basically higher indicated 
isentropic efficiency at a dryness fraction of 0.5 can be detected due to heat transfer from water into the 
gaseous working fluid as well as reduced internal leakages with regard to different ranges of rotor tip-
speed.  The lowest clearance height of 0.08 mm reveals higher indicated isentropic efficiency in the 
rotor tip-speed range between 10 m∙s-1 and 60 m∙s-1, whereas at the greatest clearance height efficiency 
increases for rotor tip-speeds from 30 m∙s-1 to 50 m∙s-1 in water-flooded operation.  At the maximum 
rotor tip-speed, similar indicated isentropic efficiencies are disclosed for both operational modes, since 
relatively high inlet throttling at a dryness fraction of 0.5 eliminates the advantages of water in the 
working chamber.  In contrast, at lower rotor tip-speed, efficiency even declines as result of relatively 
high energetic losses in terms of internal leakages.  Considering increasing rotor-tip clearance height, 
indicated isentropic efficiency declines at each dryness fraction considered.  This can be again traced 
back to the increase in internal leakage, expander air mass flow, and delivery rate as presented in 
section 4.2. 

Despite increasing mechanical efficiency at greater rotor-tip clearance heights, a conclusive 
estimation of the energy conversion made by means of effective isentropic efficiency reveals, as 
expected, a less advantageous operation under both dry-running and water-flooded conditions.  
Nevertheless, at constant low clearance height, an increase in effective isentropic efficiency up to male 
rotor tip-speed of ca. 40 m∙s-1 to 45 m∙s-1 can be detected considering a two-phase working fluid.  In 
general, this covers the part load operational range of the test twin-screw expander.  Under overload 
operational conditions, lower effective isentropic efficiencies are determined in a water-flooded 
compared to a dry-running expander. 

Since the interaction between the pressure-driven (Poiseuille) and boundary-driven (Couette) water 
clearance flow appears to have a significant impact on the development of hydraulic losses as a function 
of rotor tip-speed, mechanical power loss and different expander efficiencies at three inlet pressure 
levels are presented in order to prove this fact, figure 7.  Here, for dry-running operation, no significant 
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dependency of mechanical power loss on inlet pressure can be observed.  Considering a constant dryness 
fraction of 0.5, increasing mechanical power loss is unveiled at higher inlet pressure levels.  Hence, the 
pressure level in the working chamber might have a relatively strong impact on the development of the 
hydraulic losses and the water surge in particular. 

 

 

Figure 7. Mechanical power loss, mechanical efficiency, indicated isentropic efficiency, and 
effective isentropic efficiency depending on male rotor tip-speed at a superficial air temperature 
of 90 °C, a superficial water temperature of 60 °C, and a rotor-tip clearance height of 0.08 mm;  
dryness fraction: 1 and 0.5; inlet pressure: 3∙105 Pa, 4∙105 Pa, and 5∙105 Pa. 

 
Additional analysis of mechanical power loss depending on injected water volume flow and amount 

of water in the working chamber respectively at different inlet pressures and rotor-tip clearance heights 
are presented in figure 8.  Here, increasing inlet pressure at rotor-tip clearance height of 0.08 mm unveils 
a significant rise in mechanical power losses even at lower rotor tip-speeds.  In contrast, considering a 
rotor-tip clearance height of 0.24 mm, this dependency mostly disappears except at the highest rotor tip-
speed presented.  Since the expander has a fixed internal volume ratio, higher inlet pressure results in 
increasing pressure difference and Poiseuille water flow at the rotor-tips.  The consequence is increasing 
water surge size at the low-pressure rotor-tip clearances due to a blocking effect of the Poiseuille flow.  
At the high-pressure rotor-tip clearances, the water surge might decline or disappear at increasing 
pressure levels, since a greater pressure difference and higher pressure-driven (Poiseuille) water volume 
flow respectively is present inhibiting the water surge development.  Hydraulic shear stress in the narrow 
rotor-tip clearances at increasing inlet pressure might play a subdominant role compared to the impact 
of the water surge.  Nevertheless, at higher rotor tip-speeds, less shear-stress induced hydraulic losses 
at the low-pressure rotor-tip clearances due to stagnating water flow could be expected.  At the same 
time at low rotor tip-speeds, drive momentum transferred from the water clearance flow to the high-
pressure rotor tips might increase.  Bellow the line, as explained before, mechanical power losses under 
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water-flooded operation increase, since the impact of low-pressure clearances with regard to water surge 
development overshadows the effect of the Poiseuille flow at high-pressure rotor-tip clearances due to 
greater clearance width and cross-section respectively. 
 

 

(a) (b) 

Figure 8. Mechanical power loss as a function of water volume flow at a superficial air temperature
of 90 °C and a superficial water temperature of 60 °C; inlet pressure: 3∙105 Pa, 4∙105 Pa, and 5∙105 Pa;
rotor tip-speed: 15 m∙s-1, 37.6 m∙s-1, and 67.7 m∙s-1; rotor-tip clearance height: 0.08 mm (a) and
0.24 mm (b). 

 
For dry-running operation, no significant dependency of mechanical efficiency on rotor tip-speed 

can be detected at each inlet pressure presented in figure 7.  Under water-flooded conditions, mechanical 
efficiency decreases at higher rotor tip-speed as discussed before according to figure 6.  At constant 
rotor tip-speed, in contrast to mechanical power loss, mechanical efficiency increases at higher inlet 
pressure levels under both dry-running and water-flooded conditions.  This can generally be traced back 
to the simultaneously increasing indicated power at higher inlet pressures that even compensates the 
increase in mechanical power losses under water-flooded conditions.  Therefore, at constant rotor tip-
speed and water-flooded operation, maximum mechanical efficiency is detected basically at an inlet 
pressure of 5∙105 Pa despite maximum mechanical power losses. 

In terms of indicated and effective isentropic efficiency at increasing inlet pressure in figure 7, the 
maximum values generally move to higher rotor tip-speeds for both dryness fractions presented.  At 
constant internal volume ratio, this can be explained, on the one hand, by a greater rotor tip-speed 
according to transition from under to overexpansion and internal leakages.  On the other hand, at high 
rotor tip-speeds, overexpansion in terms of inlet throttling declines at higher inlet pressure. 

Comparing dry-running to water-flooded operation at the maximum inlet pressure of 5∙105 Pa, a 
relatively constant indicated isentropic efficiency can be determined.  In terms of a two-phase working 
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fluid, the increasing chamber pressure due to heat flow from water into the gaseous working fluid can 
explain this fact.  Thus, a greater under-expansion at constant expander internal volume ratio is the 
consequence.  Moreover, at low rotor tip-speeds, this effect is additionally sustained by a relatively high 
pressure-driven (Poiseuille) water volume flow and, hence, less effective clearance sealing.  Considering 
effective isentropic efficiency under water-flooded conditions, lower values compared to dry-running 
operation result from rising hydraulic losses at higher rotor tip-speeds. 

In contrast, a significant increase in indicated isentropic efficiency at an inlet pressure of 3∙105 Pa is 
achieved under water-flooded conditions related to dry-running operation.  As opposed to the operation 
at an inlet pressure of 5∙105 Pa, a more effective clearance sealing due to lower clearance pressure 
difference and lower pressure-driven (Poiseuille) water flow corresponds to higher efficiency values.  
At maximum rotor tip-speed, increased overexpansion according to greater inlet throttling reduces the 
efficiency.  Considering effective isentropic efficiency, the sealing effect at low rotor tip-speeds 
dominates in terms of a two-phase working fluid.  At the same time at high rotor tip-speeds, relatively 
low mechanical efficiency account for declining effective isentropic efficiency. 

5.  Conclusion and outlook 
This paper presents the results of experimental investigations into a water-flooded twin-screw expander 
with varying operational parameters considering three different rotor-tip clearance heights.  This work 
shows, that the clearance height has a relevant impact on the expander operation in terms of clearance 
sealing effect and hydraulic losses.  In this context, two significant mechanisms were identified—a 
boundary-driven (Couette) and a pressure-driven (Poiseuille) water clearance flow which, depending on 
the operational parameters, impact the level of clearance sealing and hydraulic loss induction.  Hence, 
greater rotor-tip clearance height results in lower hydraulic friction losses and higher mechanical 
efficiencies due to declining shear stress in the clearance and water surge size at the rotor tip.  At the 
same time, analysis of mechanical losses at different inlet pressures and rotor-tip clearance heights have 
evidenced the significant effect of water surge on the operation of the water-flooded twin-screw 
expander.  Even though a greater rotor-tip clearance height provides an increase in mechanical 
efficiency, indicated and effective isentropic efficiency reveal worse energy conversion considering 
both dry-running and water-flooded operation.  Finally, the advantages of water-flooded twin-screw 
expander were identified at part load operation, whereas at higher rotor tip-speeds and overload 
operation, hydraulic losses significantly affect the effective isentropic efficiency. 

In future works, the effect of each twin-screw expander clearance type—rotor-tip clearance, front 
clearance, interlobe clearance, and blow hole in particular—should be clarified.  A further goal is to 
quantify the determined influence mechanisms by means of characteristic numbers in order to generate 
a characteristic map of liquid-flooded twin-screw expanders. 
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