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Abstract
This paper presents a simplified theory giving the performance of an annular linear electromagnetic pump, such as the
liquid sodium pumps foreseen in some GenIV nuclear reactors. End effects are taken into account with a new model
enabling physical interpretation.

Introduction
An annular linear induction pump (ALIP) is an electromagnetic device producing a traveling magnetic field in an
annular section, where an electrically conductive fluid is flowing against an adverse pressure gradient (produced by a
dissipative hydraulic circuit). Its linear inductor, placed around the annular sodium channel, produces a radial magnetic
field  Br across the sodium up to the central (passive) magnetic core. The three phase arrangement of coils produces
roughly a progressive sine wave for Br, traveling at velocity UB along the axis, over the inductor length L.
For such large size pumps (axial  length ~ meters,  axial  velocity ~ meters  per  second),  the magnetic  field can be
significantly  modified  by  the  axial  velocity  Uz (high  magnetic  Reynolds  number),  especially  in  the  end  regions
(x=±L/2). The performance curve of the pump is affected (stall phenomena at high slip velocity), with an unstable zone
[1] where  partial  stall  may  occur.  Such  instabilities  have  been  observed  on  a  Japanese  pump  tested  for  similar
applications [2].
The goal of this paper is to investigate the end effects with an analytical model simpler than  [3], based on existing
theories for linear motors [4]. The model results will be compared to performance curves calculated for the PEMDYN
pump (Figure 1 a), installed at CEA to provide experimental results in the frame of the ASTRID project (a future fast-
breeder GENIV sodium reactor). PEMDYN has a sodium flowrate up to 1500m3/h, and a pressure up to 2.5bar.

Figure 1: The PEMDYN [1] experimental pump (a), and its idealized model (b)

Electromagnetic model
The geometry considered is rotationally symmetric and axially infinite (Figure 1 b), except the inductor, simplified to a
thin  sheet  of  current  (heavy  line  at  r=R2)  where  the  linear  current  density  follows  a  progressive  sine  wave  with
wavelength λ. The length of the inductor is L=pλ, where p is the "number of pole pairs", and the wavenumber is defined
as  k=2π/λ. The yokes (dashed zones in  Figure 1 b) are supposed magnetically perfect (μr~∞) and in contact with the
liquid sodium or current sheet at r=R1 and R2. The induction equation (1) is written using the azimuthal component Aθ of
the magnetic vector potential, and the axial component Uz of the velocity. Other components of both vector fields are
zero because of the rotational symmetry and the developed flow conditions along z.
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The  boundary  conditions  at  the  magnetic  yokes  impose  Bz=0  at  r=R1 and  Bz=μ0Re{Jlin(x)e−iωt}  at  r=R2 (where
Jlin(x)=Jpeakeikx for −pλ/2<x<pλ/2, and Jlin(x)=0 elsewhere). Looking for an harmonic solution Aθ(x,r,t)=Re{Aθ(x,r)e−iωt},
equation (1)  and its  boundary conditions can  be converted to  a  two dimensional  boundary value  problem for  the
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complex field  Aθ(r,t),  written below using the dimensionless variables  α=Aθ/(μ0Jpeak/k),  η=(r−R₁)/(R₂−R₁)  and  ξ=kx.
Introducing the velocity  UB=ω/k of  the  travelling field,  the  dimensionless  flowrate  q=Ux/UB to  represent  the  fluid
velocity, which is supposed independent of r in this paper, the problem can be written:
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where  the  geometrical  parameters  HR=(R₂−R₁)/R₁,  Hλ=k(R₂−R₁)  and  p measure  respectively  the  influence  of
axisymmetric  terms  (HR→0 when  the  domain  is  thin  compared  to  its  radius),  the  thickness  of  the  magnetic  gap
compared to the reduced wavelength λ/2π, and the length of the inductor (in wavelengthes). The working point of the
pump is represented by the magnetic Reynolds number  RmB=μ0σUB/k (for a given pump and fluid, it depends on the
generator pulsation ω) and by q, the fluid flowrate divided by the flowrate at synchronism.
Following [3] and  [4], the problem can be solved using Fourier transforms along  ξ, i.e. superposing solutions of the
form α̂κ ei κξ where κ is a continuously varying real wavelength and the complex amplitude of this mode. However,
we will use here only three modes, one at κ=1 to represent the solution that we would have for an infinite pump, and
two others with complex wavenumbers  κu and κd representing the end effects generated by the inlet and outlet of the
inductor and diffused upstream (Im(κu)<0 so that this mode vanishes upstream) or convected downstream (Im(κd)>0 so
that this convected mode disapears downstream by joule dissipation). Those end effect modes are requested to verify (2)
with zero source term φlin, so they can be added to the infinite pump solution without destroying it far from the ends.
Therefore  we  look  for  solutions  under  the  form  ᾱ=α̂iu e iκu(ξ+π p)  for  ξ<−πp ;  ᾱ=α̂ode iκd(ξ−π p )  for  ξ>πp,  and
ᾱ=α̂id eiκd(ξ+π p )

+α̂1 eiξ
+α̂ou ei κu( ξ−π p)  for −πp<ξ<πp (subscripts  i,o for inlet, outlet). Requesting the induction problem

(2) to be fulfilled in every subdomain, we get an ordinary differential problem with complex unknown α̂κ(η) for
each mode of wavelength κ, and we will connect the domains requesting that ᾱ  and ∂ ᾱ/∂ ξ  are continuous at ξ=±πp.

Analytical solution
For a mode with complex wavenumber κ and amplitude α̂κ(η) , (2) becomes:
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For κ=κᵤ or  κ=κd, having a non zero solution (singular value problem) requires that  κ2−iRmB(1−κq)=0 (two solutions).
Since κu has negative imaginary part, and writing √(z)  for the complex square root with positive real part, we get:
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For  large  values  of  q2RmB,  the upstream mode is  damped over  a  short  axial  distance 1/(qRmB)  without  oscillations
(counterflow diffusion), whereas the downstream mode is a weakly damped traveling wave propagating at the fluid
velocity q (convection by the flow of current loops that cannot change rapidely). Such modes were yet presented in [6],
but not used inside the inductor zone. A profile for the phasor of those modes can be obtained from (3),(4) without right
hand side: it becomes uniform for quasi flat pumps, i.e. for a small channel height compared to its radius (HR→0).
The infinite pump solution (κ=1) of (3) with boundary conditions (4) is written analytically from the modified Bessel
functions of first kind (I0,  I1) and second kind (K0,  K1) divided by their exponential trend at infinity:  I0e(z)=I0(z)/eRe(z),
I1e(z)=I1(z)/eRe(z), K0e(z)=K0(z)/e−Re(z), and K1e(z)=K1(z)/e−Re(z), using the slip magnetic Reynolds number RmS=(1−q)RmB:
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Under that form, the solution can be developed for HR→0, (quasi-flat pumps) to retrieve the classical solution of (3),(4)
for  HR=0. Furthermore, if  Hλ 1, the complex coefficient  ≪ c1 has a small module and this quasi-flat solution may be
further developed to give the thin channel solution (HR 1, ≪ Hλ 1 means that the channel height is small compared to≪
R1≈R2 and compared to λ):
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Notice that for thin channels, the distribution of α̂1  is approximately constant along η, but its variation with η is useful
to calculate Bx and then verify the boundary conditions. The continuity of ᾱ  and ∂ ᾱ/∂ ξ  cannot be exactly satisfied in
the  general  case  for  any  value  of  η,  because  the  three  modes  do  not  have  the  same  profile  along  η.  Writing
ᾱ(ξ ,η)=α̂1(η) f̄ (ξ)  is thus an approximation, but it becomes precise for thin channels (HR 1 and ≪ Hλ 1), where all≪

profiles become uniform. We will use such a formula in all cases because real nuclear pumps have indeed HR 1 and≪
their Hλ is small enough to have reasonably uniform profiles of α̂ . Writing the continuity conditions without influence
of the outlet on inlet (|exp(2iπKᵤp)| 1), we get:≪
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From the radial distribution (6) or (7) combined to the axial distribution (8), it is now possible to calculate the current
density  j̄θ=σ ( i ω Āθ−Ux∂ Āθ/∂ x )  and the radial magnetic field density B̄r=−∂ Āθ/∂ x , to get the volumetric

force density  F=j×B. The axial component of  F has a mean part  Fx avg=−Re(jθBr*)/2, (the star superscript stands for
complex conjugate), and a part oscillating at the double of the supply frequency (DSF) Fx dsf=−Re(jθBre−2iωt)/2, which has
a phasor (with double bar to indicate DSF time fluctuation):  ¯̄F x dsf=− j̄θ B̄r/2 . Using the dimensionless solution above,
this can be written  Fx avg=Fref fx avg and ¯̄F x dsf =Fref

¯̄f xdsf , with:
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Those expressions can be constructed analytically from (6) or (7) and (8), to get the distribution of electromagnetic
forces inside the pump. In the thin channel case, the force density will depend only on ξ and will be equilibrated by the
pressure rise along the channel (and by friction forces which are typically one or two orders of magnitude lower). In
other cases, the non uniform distribution of the forces across the channel is not compatible with a developed velocity
profile (dU/dx=0), and it will have the velocity profile evolve towards an equilibrium profile described in [7] for infinite
pumps. Since we use a uniform velocity profile, we only present results calculated with thin channel hypothesis.
Integrating the average force density  Fx avg over the channel length will give the pressure rise provided by the pump
(neglecting friction),  and  integrating  Fx dsf will  give the  DSF fluctuation of  this  pressure rise.  We use a numerical
integration over the interval −p−1<ξ/π<p+10 (out of which the force density is negligible), with a step δξ=π/25.

Results
The model was first applied to a pump with p=3 pairs of poles as PEMDYN, for RmB=8, typical in that facility. Figure 2
shows a typical traveling wave shape at moderate slip (1−q=20%), with the different modes contributing to the real part
of f(ξ) (in black). The upstream diffusion of each end effect is hardly visible since it affects a very short length, whereas
the downstream convection affects the whole inductor and a large zone after it.  The inlet wave (dark red),  almost
compensating  the  infinite  pump solution  (light  blue)  at  inlet,  propagates  downstream with  damping,  but  since  it
propagates at a different speed, it can be in phase before outlet. Therefore the module of the wave does not increase
monotonically from inlet downwards, as shown in Figure 3 where it is plotted for several values of q. For lower q, the
velocity difference between both waves is larger and the interference effect is stronger. 

Figure 2: a) Modes added up to get the finite pump solution ;
b) resulting traveling wave

Figure 3: Module of the traveling wave for p=3, RmB=8 and
several values of q

a)

b)
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Our theory was validated using a numerical axisymmetric model [8] based on the finite volume code Fluent plus a home
made induction module. The configuration of  Figure 1 b) was modelled with p=10,  HR=0.005,  Hλ=0.45,  RmB=8.9 and
several values of  q. The finite volume code calculates the velocity profile, using a uniform profile imposed at inlet
(x=−6λ), and a uniform pressure at outlet (x=15λ). Despites its uniform velocity, our theory gives a radial magnetic field
close to the numerical calculation (Figure 4), and a theoretical performance curve (Figure 5) corresponding roughly to
the electromagnetic term in the numerical code (the total pressure difference is slightly weaker because of friction).
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Figure 4: Radial magnetic field: theoretical and numerical Figure 5: performance curves: theorerical and numerical.

The axial force density distribution is presented in Figure 6 for a typical PEMDYN case (p=3, RmB=8), and in Figure 7
for  an  hypothetic  pump with  10  poles  (p=5)  and  a  larger  synchronism velocity,  wavelength or  fluid  conductivity
(RmB=20). This last figure clearly shows the interference effect making the force density oscillate with ξ.
As previously described [3],  [4],  [6], the inlet end effect is responsible for a negative force (directed upstream), on a
zone that appears to be longer and longer as the flowrate tends to synchronism. The electromagnetic problem seen from
the fluid side is similar to transient diffusion into the channel of a suddenly applied AC field, whereas the fluid is
convected downwards: the length of the inlet effect thus increases with q.RmB (and not RmS). It appears in our model that
a zone with similar length would exist after the inductor end because of the convection of the electromagnetic field after
the pump outlet, if the magnetic yokes were long enough. That zone would generate few net pressure but a large amount
of DSF fluctuations, and its limitation due to limited yokes will decrease pressure fluctuation but not pressure rise.

Figure 6: Force density along small pump: a) avg, b) dsf Figure 7: Force density along larger pump: a) avg, b) dsf

Integrating  the  force  distribution,  we  obtain  the  pressure  difference  provided  by  the  pump  for  any  value  of  q
(performance curve at constant current), but also the fluctuation of this pressure difference. Such curves are presented in
Figure 8 for p=3 and several values of RmB. The dimensionless values plotted in that figure should be divided by Hλ², and
multiplied by Fref/k to get pressure differences in Pascals. The DSF pressure fluctuation can be 0 even if the module of
¯̄fx dsf  is constant  along the pump, because its phase evolves along  ξ.  For the infinite pump solution, the phasor is

proportional to e2iξ, and integrating from −pπ to pπ gives 0. The DSF pressure fluctuation is thus due to end effects.
An infinite pump with thin channel would give a maximum average force density at  RmS=1, where  Hλ

2 fx avg=0.5 , so
that the total dimensionless force would be Hλ

2 fx avg
tot =π p  at the maximum point, if we integrate over the finite length

without end effects. The maximum of the performance curves such as the ones in Figure 8 a) can be compared to those
values, and this work can be repeated for other values of p. The results are presented in Figure 9, and shows that the
maximum always occur at higher slip than RmS=1, especially for a small number of poles where the end effects are more
present. Because of the end effects,  the maximum pressure provided by the pump is lower than expected from the
infinite pump solution, especially if the number of pole pairs is small and expecially for large values of RmB.

a)

b)

a)

b)
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Figure 8: Pressure provided by the pump as a function of
flowrate: a) mean value, b) dsf fluctuation

Figure 9: Maximum pressure point of an ALIP with p pairs of
poles: a) position, b) value of the maximum

Conclusion
This paper presents a simple analytical model to describe the end effects in large size annular linear induction pumps. It
gives the real position and value of the maximum pressure point, and thus can be used to rapidely find the limits of the
stable working domain of the pump, as well as for parametric studies concerning the pump performance, or pressure
fluctuations at 2ω.
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