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Abstract 
One of the most perspective methods to produce solar grade silicon is refinement via metallurgical route. The most critical 
part of this route is refinement from boron and phosphorus due to high segregation coefficients. One possible approach 
to remove boron is use of reactive gas on surface of silicon melt. An approach of creating surface waves on silicon melt’s 
surface is proposed in order to enlarge its area and accelerate removal of boron via chemical reactions. 
This paper focuses on numerical analysis of surface wave creation by means of low frequency magnetic field. Frequency 
of magnetic field and its amplitude significantly change the character of surface waves with most changes occurring when 
waves become nonlinear. Mechanism of impurity removal from silicon surface to the gaseous phase is directly connected 
with surface area enlargement. It was found that two effects are responsible for enhancement of refinement rate – 
enlargement of surface area and wave-assisted diffusion close to the surface of silicon. 
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Introduction 
The exhaustion of fossil fuel resources, global warming, and increased energy consumption all make finding alternative 
energy sources important. In terms of environmental impact, solar energy is one of the most perspective and attractive 
sources. However, development of solar power is limited by the solar power costs in comparison to other power sources. 
As shown in [1], by 2020 the energy cost for solar power is still expected to be higher than for hydro, onshore wind, 
geothermal, nuclear and even biomass energy sources. Reduction of solar cell production costs is necessary for this 
technology to develop, and one solution is to reduce the cost of raw materials like polysilicon. Solar cell costs are directly 
linked to polysilicon production costs, which can be reduced by lowering energy consumption during solar grade silicon 
(SoG-Si) production.  
In many investigations phosphorus removal is found to be the most challenging task, since the purity threshold (< 1 ppm) 
was not reached [2]. Although, oxidation and slag refinement is simple process for removing phosphorus from silicon, it 
is insufficient to reach low purity threshold. Mostly used approach for phosphorus removal is evacuation, it is dependent 
on free surface area and bulk melt stirring. Refinement enhancement can be achieved by superposing DC and AC magnetic 
fields [3]. Furthermore, this impact creates also mixing effect in the bulk melt, which is also important for boron removal. 
In comparison, classical induction stirring can enhance only bulk melt mixing, leaving surface area size unchanged. 
Known approach for boron removal is blowing of oxidizing gas on free surface [4], and with additional creation of surface 
waves by means of electromagnetic impact thus creating capillary waves and increasing surface area. Previously 
mentioned electromagnetic impact technology (superposition of DC and AC fields) can be used for boron evaporation, 
because it enhances surface area and stirring. 
Highest boron refining rates can be achieved with plasma refining, but it has high energy demand. In reactive gas refining, 
concentration of boron changes according to first order rate law 
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Here CB – boron concentration with indices after comma indicating time, A is the area of interfacial surface between 
oxidizing gas and silicon melt, V is the volume of silicon melt, t is time, kB is boron mass transfer coefficient at the surface, 
measured in µm/s. kB is determined experimentally and is dependent on oxidizing gas supply rate, type of oxidizing gas 
and melt temperature. Creation of surface waves would increase A/V ratio, thus speeding up boron removal. Typical kB 
values found in literature are 6 – 40 µm/s, and kP are 2-5 µm/s for phosphorus. 
 
Modelling of free surface waves 
A 3D problem of mercury with free surface is considered. The mercury tank is surrounded by inductor, which creates 
alternating magnetic field, see Fig. 1 (a) for illustration. A similar device and experiment was described in [5]. This 
mercury experiment is only used for model validation purposes. 
In this model, mercury properties were set in the melt domain – electrical conductivity σmelt=1.04·106 S/m, kinematic 
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viscosity νmelt = 1.14·10-7 m2/s, density ρ = 13534 kg/m3, surface tension γ = 0.5 N/m and contact angle θ = 90°. The 
inductor has homogeneous current distribution with density Jampl = 6.5·106 A/m2 and frequency f = 14 Hz. Turbulence 
model k-ε is used, and maximal Courant number is set to 0.4. The transient simulation reached flow time 4 sec. 
For numerical simulations we use two open-source software packages – the finite element multi-physics simulation code 
Elmer and computational fluid dynamics code OpenFOAM. Efficient parallel coupling between both codes is done using 
EOF-Library [6]. 
 

  
(a) (b) 

Fig. 1: (a) Schematic drawing for 2D axisymmetric model, where vertical dashed line is symmetry axis and horizontal 
dashed line is melt’s initial filling level. (b) Computational scheme for coupled OpenFOAM and Elmer simulation 

 
Computation scheme is shown in Fig. 1 (b). OpenFOAM package solves electromagnetic quantities in Elmer package 
and fluid dynamics with free surface using volume of fluid (VOF) method in OpenFOAM. Elmer solves the complex 
problem for the time-harmonic electromagnetic (EM) field, then J and B amplitudes and the corresponding phases are 
computed. Here electromagnetic field is not recalculated when free surface is changed. This effect is neglected to speed 
up the simulation time. This approach can be used because penetration depth of EM field is much larger than free surface 
wave amplitude. 
Results of 3D surface simulation show different wave structure depending on the strength of magnetic field. Three 
different regimes were obtained (see Fig. 2): 

• Regular axisymmetric waves. Wave structure similar to Fig. 2 (upper-left), but without azimuthal waves. This is 
most regular pattern and is obtained at weak magnetic field values (below 0.15 T). 

• Regular axisymmetric waves with azimuthal waves, seen in Fig. 2 (upper-left and bottom-left). This regime is 
obtained at stronger magnetic fields (0.15-0.21 T)  

• Azimuthal waves Fig. 2 (upper-right). Here axisymmetric have disappeared. This regime appears at magnetic 
fields above 0.21 T. 

These results are in agreement with findings of Galpin and Fautrelle [35]. However, they found fourth regime, highly 
chaotic surface motion with jets of liquid metal appearing on the surface. This regime appears at even higher magnetic 
field values. In this research, such magnetic field values were never used. 
For refinement of silicon, important parameter is surface area enlargement S(t)/S(0). Here S(t) is surface area at some 
time, but S(0) is area of surface at rest. Fig. 2 (bottom-right) shows surface enlargement for different magnetic field values. 
For lowest magnetic field strength, B=0.18 T, the area enlargement is slightly above 1%, for B=0.21 T – about 2.5%, for 
B=0.25 T – about 4.5%. 
 
Modelling of silicon refining process 
For silicon refinement, a system consisting of gas domain with incoming jet (see scheme in Fig. 3) and molten silicon 
domain is modelled. The computations of silicon melt flow in crucible and gas flow injected with lance are performed 
using ANSYS FLUENT package with k–ε turbulence model. Boron concentration both in melt and in gas is traced with 
UDS (User Defined Scalar) option in ANSYS FLUENT. Lorentz force, induced by coil is modelled with EMAG module 
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of ANSYS Multiphysics package. Parameters of simulations are following: 
• radius of crucible with silicon melt is 0.031 m; 
• argon jet lance diameter is 0.0062 m; 
• argon flow rate is 4 𝑙/ 𝑚𝑖𝑛⁄ ; 
• boron-carrying-molecule diffusivity in argon is 3.4 ∙ 109: 𝑚; 𝑠⁄ ; 
• boron diffusivity in silicon is 2.4 ∙ 109> 𝑚; 𝑠⁄ ; 
• amplitude value of electrical current in coil is 10 kA. 

 

 
Fig. 2: Free surface shape after 3.49 seconds for different magnetic field strength values and corresponding surface area 

enlargement (bottom right) 
 
In reality there is a chemical reaction taking action on the surface, where reacting gas oxidizes boron and new molecules 
are formed which carry boron away from the melt. In this simulation idealized system is used, where one scalar variable 
was used in both melt and gas domain. In the beginning, fixed concentration of boron in melt is assumed. Then, gas with 
boron concentration 0 is blown on the surface of silicon, and part of boron is removed. 
This simulation was done to estimate the boron mass transfer coefficient 𝑘% at gas–silicon interface (see equation 1). The 
mean boron concentration in melt during this refinement process simulation is shown in Fig 4. The estimated kB value 
based on simulation of 5 hours of refinement is 12.7 µm/s. This value is in good agreement with measurement results in 
[4]. 
To account the influence of surface waves, a simulation with only gas domain was performed. Gas domain had moving 
bottom boundary – harmonic wave motion was assigned to it. To measure the influence of different wave amplitudes and 
frequencies, a boron flux through outlet was observed.  
Surface waves with realistic amplitudes did not show any enhancement in boron flux in comparison to static gas-silicon 
interface. The reason for that is strong diffusion, which leads to diffusion length scale comparable to wave amplitude. It 
turned out that refinement enhancement can be observed only if following criterion is met: 

𝐴 > 4	A
𝐷
𝑓  

Here A – wave amplitude, D – diffusion coefficient of boron-carrying molecule in gas, f – frequency of waves. Wave 
amplitude in this criterion is, however, linked to frequency, therefore it cannot be directly used to estimate required 
frequency. 
Boron flux through outlet of the gas domain was obtained in simulations with different wave amplitudes (Fig. 5). There 
is obvious increase of boron flux with increase of amplitude. However, values normalized on surface area lay on the 
horizontal line, matching values for flux with static surface. This clearly indicates that boron flux increase is connected 
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with surface area enlargement. 
 

 

 

Fig. 4: Boron integral concentration Cint in silicon melt as function of silicon 
refining process time t 

 
Fig. 3: Modelling of boron removal 

from silicon with oxidizing 
gas jet: CB – boron 
concentration, vSi and vAr – 
silicon melt flow and argon 
flow velocities for t = 0.41 h 

Fig 5: Integral boron flux through outlet dependence on wave amplitude. Error 
bars – 4% of the value. Data are obtained when steady state is reached 

 
Conclusions 
Surface waves on liquid metal surface can be captured using VOF approach. Simulations showed three wave regimes, 
with less structured waves appearing at higher magnetic field values. Increase of magnetic field amplitude also leads to 
increased surface area, which is important for refinement. Simulations show clear dependence of refinement rate on 
surface area. 
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