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Abstract 

The Cu-Cr-Co-Si alloy is a newly designed copper alloy with high mechanical properties and a proper electrical 

conductivity. The intermediate frequency electromagnetic field was applied during the solidification process. The results 

showed that the grain size remarkably refined with the application of electromagnetic field, the structure of the as-cast 

Cu-1Cr-1Co-0.2Si alloy transformed from coarse grain to homogeneous equiaxed grain due to the electromagnetic force. 

The microhardness and tensile strength of the alloy with the electromagnetic field intensity of 10 mT increased by 27.4% 

and 14.9% respectively compared with as-cast condition after solid solution and aging treatment. While, the electrical 

conductivity of the ingots with electromagnetic field is 53.1% IACS, which is slightly lower than that of the as-cast 

condition. 
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Introduction 

Cu-Cr alloys are the most potential alloys that meet comprehensive performance of high strength and high electrical 

conductivity, which have been widely used in industrial applications such as lead frames, railway contact wires, 

connectors, heat transfer elements and resistance welding electrode materials[1-3]. Alloying has been proved to be an 

effectively method to improve the mechanical properties with a slightly decrease of electrical conductivity[4-6]. Hence, a 

new type Cu-Cr alloy with Co and Si additions was designed. The high strength is attribute to the precipitation and 

particle dispersion strengthening mechanisms, while the electrical conductivity is decreased due to solute atom that 

dissolve into the Cu matrix. The main structural requirement of the Cu-Cr-Co-Si alloy is the homogeneous distribution of 

refined precipitation. Hence, a long time of homogenizing annealing is needed to eliminate the segregation of solutes 

ahead of solution treatment[7,8]. However, being in high temperature for a long time can result in a severe grain 

coarsening[9,10]. Thus, the use of magnetic field is a promising topic in the fabrication of materials.  

    Magnetic field has been successfully applied into the improvement of the solidification structure[11]. Extensive 

researches in the past demonstrated that the melt acted by appropriate magnetic field has the advantages of refining 

solidification structure and reducing segregation[12,13]. Therefore, electromagnetic field is considered to apply into the 

solidification of Cu-Cr-Co-Si alloy to improve the structure and to reduce the segregation of solutes, which helps to 

shorten the homogenizing annealing. This study investigated the influence of magnetic field on the microstructure, 

precipitate distribution and properties of Cu-Cr-Co-Si alloy. 

Experimental Procedures 

The Cu-1Cr-1Co-0.2Si alloy was prepared in a 5 kg intermediate frequency induction furnace with electrolytic 

copper (99.97 wt.%), pure chromium (99.8 wt.%), pure cobalt (99.9 wt.%) and pure silicon (99.9 wt.%). At first, the 

electrolytic copper, cobalt, and silicon were melted in the furnace. Pure chromium was added to the melt as the 

temperature reached 1300 o
C. Then the temperature was held at 1300 

o
C for 10 min to ensure the adequately melting of 
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Cr, Co and Si elements. Finally, the melt was poured into the mold with a diameter of 60 mm, the magnetic field was 

imposed during the solidification process. Fig. 1 is the schematics of the magnetic field experiment instruments. The 

magnetic flux density, B, used in this experiment was 10 mT. The Cu-1Cr-1Co-0.2Si alloy solidified without magnetic 

field was prepared as a comparison. The ingots were solution treated at 990 °C 

Fig. 1 The schematics of the electromagnetic field experiment instrument. 

    The microstructures were observed by optical microscope (OM, MEF4, Leica company, Solms, Germany) and field 

emission scanning electron microscope (FESEM, SUPRA55, Carl Zeiss company, Oberkochen, Germany). Mechanical 

properties were tested by a universal electronic tensile-testing machine. At least three standard tensile bars of φ10mm 

were tested for each sample. All tensile tests were performed at room temperature with a strain rate of 1 mm/min. The 

microhardness was measured using a Vickers hardness tester under 300 g loads maintaining 15s. The electrical 

conductivity was measured using a D60K conductivity measuring instrument, which is characterized by International 

Annealed Copper Standard (% IACS).  

Results 

Macrostructures and microstructures. 

Fig. 2 shows the macrostructures and SEM images of Cu-Cr-Co-Si alloy with and without magnetic field. It can be seen 

that the macrostructure of as-cast Cu-Cr-Co-Si alloy without magnetic field are mainly coarse columnar grains. With the 

application of the magnetic field, the solidification structure tends to homogeneous equiaxed grains and the average grain 

size refined from 3000 μm to 750 μm (Fig. 2a-b). Two kind of newly formed phases are formed during the melting and 

solidification (Fig. 2c-d). The EDS analysis confirms the phase with gray color and a large size is Cr15Co9Si6, while the 

other phase with white and a small size is Co2Si. Meanwhile, the number of the particles distributes more uniform with 

the application of magnetic field.  

Fig.2 Macrostructures and SEM images of as-cast Cu-1Cr-1Co-0.2Si alloy with and without electromagnetic field: (a) 

and (c) B=0; (b) and (d) B=10 mT  
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Properties
Fig. 3 presents the microhardness comparsion of the Cu-1Cr-1Co-0.2Si alloy with and without magnetic field. It can be 

seen that the average values of microhardness under magnetic field B=0 and B=10 mT are 103.3 HV and 131.6 HV, 

respectively. With the application of magnetic field, the microhardness increases by 27.4 %. Fig. 4 exhibits the 

stress-strain curves of the Cu-1Cr-1Co-0.2Si alloy with and without magnetic field. The tensile strength of 

Cu-1Cr-1Co-0.2Si alloy solidified under magnetic field B=0 and B=10 mT are 306.4 MPa and 352.1 MPa, respectively. 

With the application of magnetic field, there is an evident increment in tensile strength and elongation. The increment of 

tensile strength is in correspondence with the particle distribution are shown in Fig. 2c-d. The slight improvement of 

elongation under electromagnetic field is due to the grain refinement as shown in Fig. 2a-b. Since the macrostructure of 

Cu-1Cr-1Co-0.2Si alloy transforms to refined equiaxed grains under the effect of magnetic field, the difference between 

deformation within the grain and grain boundaries grows less. Thus total deformation becomes more uniform under the 

action of external force. The electrical conductivity comparsion of Cu-1Cr-1Co-0.2Si alloy with and without 

electromagnetic field is shown in Fig. 5. The average values of electrical conductivity under electromagnetic field B=0 

and B=10 mT are 57.6 %IACS and 53.1 %IACS, respectively. With the application of electromagnetic field, there is a 

light decrease in electrical conductivity, which is due to the increase of interface scattering.  

Discussion 

The effect of magnetic field on grain refinement. 

The coils create a rotating magnetic field when alternating current is imposed. To the melt, under the effect of 

magnetic field, generates an induced eddy current in turn. As a result, the melt is subjected to a Lorentz force under the 

common action of induced eddy current and rotating magnetic field, which can be expressed as follows [14]: 

F = J × B (1) 

where J is the induced eddy current, and B is the magnetic flux density. 

    The low temperature melt near the edge of graphite is taken to the center by the electromagnetic body force, and the 

temperature gradient in the melt reduces. The compulsive convection caused by magnetic field generates shearing force, 

and plenty of dendrites are broken off [15, 16]. The flow transports these fragments from the interdendritic spacing to the 

region ahead of the solidification front. In this area, the fragments offer cores for nucleation. Since the nucleation rate 

increases and temperature field becomes homogeneous, the solidification structure transfers from big columnar dendrites 

to refined equiaxed grains over the cross–section. 

The effect of magnetic field on the properties. 

Particle strengthening occurs due to the Orowan dislocation bypass mechanism. This mechanism comprises a 

dislocation bow–cut and bypassing between un-deformable particles, leaving a dislocation loop around the particles. 

According to the Orowan strengthening model, the strength increment can be calculated as follows[17,18]: 

Fig. 3 Microhardness comparsion of 

the Cu-1Cr-1Co-0.2Si alloy with and 

without electromagnetic field. 

Fig. 5 Electrical conductivity comparsion 

of the Cu-1Cr-1Co-0.2Si alloy with and 

without electromagnetic field. 

Fig. 4 Stress-strain curves of   

the Cu-1Cr-1Co-0.2Si alloy with 

and without electromagnetic field. 
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where M is the Taylor factor for the fcc copper matrix, b is the Burgers vector, G is the shear modulus of the matrix, υ is 

the Poisson’s ratio of the copper matrix, r and f represent the average radius and volume fraction of the particle 

precipitates, respectively. With the application of magnetic field, the precipitation particles are refined and their amount 

increases, resulting in an improvement of tensile strength and microhardness. 

    The resistivity of copper matrix can be partitioned into the contribution of four main scattering mechanisms [19]: 

1 σalloy = ρ
alloy

= ρ
imp

+ ρ
def

+ ρ
int

+ ρ
pho

                                   (3)

where ρ
pho

 is the resistivity contribution from phonon scattering, ρ
def

 is the dislocation scattering, ρ
int

 is the interface

scattering, and ρ
imp

 is the impurity scattering. The Alloy with and without magnetic field have similar values of ρ
imp

,

ρ
def

 and ρ
pho

. Since the amount of precipitate increases with the application of magnetic field, the more interface

produced between the Cu matrix and the particles increases the ρ
int

. Thus, with the application of magnetic field, the

total resistivity of aged Cu-1Cr-1Co-0.2Si alloy is increased and the electrical conductivity is reduced. 

Summary 

(1) The macrostructure of Cu-1Cr-1Co-0.2Si alloy transform from coarse columnar grains to refined equiaxed grains with

the application of magnetic field. 

(2) The microhardness and tensile strength of aged Cu-1Cr-1Co-0.2Si alloy increases with increasing the magnetic field.

(3) The electrical conductivity of aged Cu-1Cr-1Co-0.2Si alloy exhibits a slight decrease with increasing magnetic field.
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