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Abstract. Structural, mechanical properties of CaMg2 Laves phase are investigated by 
the first-principle calculations and then the homogenized moduli are calculated by 
both the classical Reuss-Voigt-Hill estimation and a so-called Y parameter. Above all, 
the optimized crystal parameters are in very good agreement with the experimental 
data reported. Besides, elastic constants Cij are calculated, thus the shear modulus, 
bulk modulus, Young’s modulus, Poisson’s ratio are calculated to compare with the 
relative data in references. Contrary to Hill approach, the Y parameter enables to 
investigate the anisotropic characteristics and isotropic elastic properties of CaMg2 
structure. By using Y parameter, we can see that Young’s modulus and Poisson’s ratio 
as a function of the compliance coefficient Sij (or elastic constants Cij) and plane 
orientation are distributed within a reasonable range, which are useful for the DFT 
study of similar hexagonal crystal structure at nanoscale. 

1. Introduction 
Magnesium (Mg) alloys cause more attention in recent years, as the best strength to weight ratio, low 
density and good stiffness [1, 2]. However, the practical application of magnesium alloys has not been 
widely used due to their restricted mechanical properties, as it easy to be oxidized as well as the 
limited mechanical properties [3,4]. Besides,  by adding rare-earth (RE) elements, the mechanical 
properties of Mg-alloys can be greatly improved [5]. Besides, Ca can normally raise the density of 
aging precipitates MgZn2 phase, therefore can improve the mechanical properties of the Mg-alloy [6]. 
Mg–Ca alloy has the combustion resistance and good oxidation [7]. The binary system of Mg-Ca has a 
good biocompatibility, no toxicity and appreciable corrosion resistance [8]. Zhang et al. [9] investigated 
the structural and thermodynamic properties of CaMg2 in Mg–Al–Ca system. Ortegaet al. [10] 
investigated the precipitation process of CaMg2 in Mg–Ca–(Zn) alloys by using positron annihilation 
spectroscopy. Zhong et al. [11] investigated the thermodynamic data of C14, C15 and C36 structures of 
CaMg2. Moreover, as its excellent physical and chemical properties [12-14] in Mg-Ca, Mg-Al-Ca and 
Mg-Zn-Ca alloy systems, CaMg2 Laves phase has caused more attention. Experimentally, some Laves 
phases CaAL2 (C15), CaMg2 (C14), (Mg,Ca)Al2 (C14) and Ca(Mg,Al)2 (C36)  in Mg-Al-Ca alloys 
have been investigated [15,16]. Theoretically, Yu et al. [17] studied the mechanical properties of the AB2-
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type Laves, discovering that the CaMg2 phase has a strong structural stability and the alloying ability. 
Tang et al. [3] investigated the elastic properties of CaMg2 Laves phase, which suggests that CaMg2 
Laves phase has a strong stability. The stability and mechanical properties of the Mg-Ca system was 
studied by Zhou et al. [8], with the conclusion that CaMg2 phase is ductile. Mao et al. [18] investigated 
the mechanical properties of intermetallics in the Mg-Zn-Ca-Cu alloy. However, there is no theoretical 
systematically study reported about the structural, mechanical properties of CaMg2 phase. Elastic 
moduli of polycrystals can be calculated by Y-parameter and the Reuss-Voigt-Hill (RVH) methods [20-

24]. Musgrave [25] and Neighbours [26] have discussed the propagation velocities of sound for different 
crystal symmetrys.  

In this work, the Y-parameter and Reuss-Voigt-Hill (RVH) methods are used to investigate elastic 
properties of the CaMg2 phase. Hence, this work aim to study about the elastic properties of C14-type 
CaMg2 phase on the basis that Young’s modulus is the function of the elastic constants in a certain 
orientation of the crystal plane. These are useful for similar hexagonal structure with the same space 
group P63/mmc at nanoscale.  

2. Modelling and computational method 

2.1 Modelling of CaMg2 crystal 
Manganese carbonate crystals belong to the hexagonal type, the space group is P63/mmc type, and the 
lattice parameters are as follows: a=b=6.25Å, c=10.10Å, α=β=90°, γ=120°. Its crystal structure is in 
Figure 1.  

 

Figure 1. Schematic diagram of CaMg2 crystal structure. 

As in Figure 1, Mg atoms are located on 2a, 6f sites. Besides, Ca atoms are located on 4f sites. For 
Mg 2p6 3s2 and Ca 3s2 3p6 4s2, the Pseudo atomic calculations are carried out. The lattice parameters 
are optimized for energy minimization. 

2.2 computational method 
CASTEP as an first-principles plane wave pseudo-potential method is used for the calculations. The 
exchange correlation potential is considered by the generalized gradient approximation (GGA). The 
cut-off energy of the plane wave is set as 400eV to fully converge during calculation. The Brillouin 
zone with a mesh of 12×12×8 is generated by Monkhorst-Pack method. Geometry optimization is 
carried out with optimizing cell by the scheme of the Brodyden - Fletcher - Goldfarb - Shanno (BFGS) 
minimization until the total energy convergence value is 5.0×10-6 eV/atom, the pressure region is 0～
60GPa.  

3 Result analysis and discussion 
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3.1 Lattice parameters and elastic constants 

3.1.1 Lattice parameters 
The lattice parameters at 0MPa are shown in Table 1.  

 

Table 1. Lattice a, b, c (Å) of CaMg2 crystal. 

 a0(Å) c0(Å) c0/a0 V0(Å3) 

This work 6.250 10.101 1.616 341.732 

Cal. [3] 6.232 10.093 1.620 339.740 

Exp. [16] 6.220 10.100 1.624 341.081 

Cal. [17] 6.240 10.140 1.625 342.200 

From Table 1, the c/a ratio used is 1.616, within the relative error range of the experiment, which 
match better to Tang [3] 1.620, Aono [16] 1.624 and Yu [17] 1.625.  

3.1.2 Elastic constants 

Elastic constants Cij (GPa) of CaMg2 crystal is in Table 2. 

Table 2. Elastic constants Cij of CaMg2 crystal. 

 C11 C12 C13 C33 C44 
This work 55.70 18.05 15.26 58.39 16.95 

Cal. [5] 62.95 15.27 13.64 65.20 17.77 
Cal. [18] 51.43 22.31 14.73 58.51 14.32 
Exp. [27] 56.25 15.90 15.00 61.63 18.05 

From Table 2, we can see that C33 is the largest, indicating that the stiffness in this direction is the 
largest. C33 in c-axis direction is perpendicular to the atomic plane composed of a-axis and b-axis. 
Elastic constants Cij under various pressures of 0-60GPa is in Figure 2. 

 

Figure 2. Elastic constants under pressure of 0- 60GPa 

From Figure 2, the variation of elastic constants under different pressures is not the same, where 
the slope of the C11 and C33 change curves is positive. The contribution of C33 to elasticity is greater 
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than that of the a-axis C11 and the b-axis C22. The rest elastic constants slightly increased but tended to 
be relatively steady. 

3.2 Reuss bound and Voigt bound 

3.2.1 Reuss bound and Voigt bound 

For hexagonal crystals[21], the elastic constants should satisfy the generalized stability criteria. 
Generally, the Reuss and Voigt bounds of hexagonal crystals are as [21]: 
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Based on the upper boundary (Voigt bound) and lower boundary (Reuss bound), elastic moduli can 
be calculated [21,23] as follows: Gv=18.63GPa, Bv=29.66GPa, Gr=18.48GPa, Br=29.65GPa, 
B=25.66GPa, G=18.55GPa, E=46.05GPa, µ=0.241. Besides, values of the B (29.66GPa) and G 
(18.55GPa) are consistent with the values of 29.43GPa and 15.72GPa by the experimental 
measurement of Mao [18]. 

3.2.2 The compliance coefficient 
Elastic constant characterizes the response of the lattice to external stress within the elastic limit [8]. 
For hexagonal crystal, the interchangeable relation between Cij and Sij are as follows [28]: 
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Young's modulus describes the linear deformation behaviors of the crystal, its value in three 
directions of a, b, and c axes can be obtained from the inverse Sij matrix in Cartesian coordinates: Ex = 
S11

-1, Ey = S22
-1, And Ez = S33

-1. The Sij can be obtained by inverse matrix. 
Thus, the compliance coefficient Sij can be calculated as: S11=0.0209, S33=0.0590, S12=-0.0057, 

S13=-0.0040. By the definition, thus: Ex=Ey=47.8469GPa, Ez=16.9492GPa. 

3.2.3 Y-parameter expressions 
Based on the Reuss bound, Y parameter including elastic modulus EY and Shear modulus GY of the 
hexagonal crystal surface normal (n=(u, v, w)) are as [29]: 
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Where w is a normal direction cosine of hexagonal crystal surface.  
Similarly, for Voigt bound, EY and GY are as [29]: 
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When w2=1/3, Young’s modulus is equal to the calculation result by Hill model. 
Relations between compliance coefficient Sij and Young's modulus EФ (or shear modulus GФ ) in 

either direction of hexagonal crystal making an angle Ф with c-axis are [28]: 
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Where, l3= cos  is the cosine of normal orientation L3 within crystal plane of hexagonal crystal.  

3.3 Elastic moduli by various methods 

3.3.1 Homogenized elastic moduli by RVH 
Based on calculated Cij, homogenized moduli are obtained by RVH method. Voigt and Reuss 
approximations showing upper limit and lower limit are in Table 3, the difference within acceptable 
errors arises due to the use of different parameter Cij in calculation. 

Table 3. Mechanical moduli (unit: GPa) of CaMg2 crystalline by various methods  
 Bv  Br  Gv Gr B  G  

This 
work 

29.66 29.65 18.63 18.48 29.66 18.55 

Cal. [5] 30.69 30.69 21.78 21.24 30.69 21.51 
Cal. [18] 29.43 29.43 15.95 15.50 29.43 15.72 
Exp. [27] 29.55 29.51 19.80 19.66 29.53 19.73 

From Table 3, we can see that elastic moduli by Y-parameter are consistent with the classical 
Reuss-Voigt-Hill (RVH) calculation. The relation G=E/[2(1+v)] are satisfied with parameters in Table 
3 and Table 4.  

3.3.2 Surface of elastic modulus 
The universal anisotropic index (AU), the percentage of anisotropy in compression and shear (AB and 
AG) are [30]: 
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Where the BV, BR, GV and GR refers to the Voigt and Reuss approximations of bulk modulus and 
shear modulus. AU=0 corresponds to isotropic structure. AG=1 stands for the largest elastic anisotropy . 
Young’s modulus E, Poisson’s ratio ν, bulk to shear modulus ratio B/G, and elastic anisotropy indexes 
(AU and AG) are listed in Table 5. 
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Table 4. Young’s modulus E, Poisson’s ratio ν, bulk to shear modulus ratio B/G, and elastic 
anisotropy indexes (AU and AG). 

 ν AU AG B/G E (GPa) 

This work 0.241 0.040 0.004 1.598 46.055 
Cal. [5] 0.216 0.127 0.013 1.427 52.309 
Cal. [18] 0.273 0.143 0.014 1.872 40.043 
Exp.[27] 0.227 0.037 0.004 1.497 48.415 

Surface of elastic modulus by DFT calculation of CaMg2 compound is shown in Fig.4. 

  
a)Young's modulus;           b)Shear modulus; 

Figure 3. Surface of elastic modulus by DFT calculation of CaMg2 crystal 
From Figure 3, Young's modulus and shear modulus are anisotropic, showing a certain anisotropy. 

Young’s modulus E of CaMg2 compound is 46.055 GPa, which demonstrates manganese carbonate is 
a relatively stiffer material. Poisson ratio is 0.241, which is close to other references[5, 18, 27]. 

3.3.3 Elastic moduli variation by Y-parameter 
Young’s and Poisson ratio of CaMg2 structure by Y-parameter are in Figure 4. 
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(b) Shear modulus 

Figure 4. Young’s modulus and Poisson ratio of CaMg2 by the Y parameter  
As from Fig.4 a) -Fig.4 b), Young’s modulus and Poisson's ratio of CaMg2 are closed to each other. 

Moreover, Young’s modulus E is between 43.77GPa and 52.07GPa, Poisson ratio v is between 0.207 
and 0.254. Elastic moduli of CaMg2 compound based on Cij can be calculated by RVH estimation[21-24]. 
It can be seen that, when w2=1/3, values of E and v are 46.05GPa and 0.24, which are equal to results 
of Hill model. 

4. Conclusion 
Generally, elastic properties of CaMg2 crystal is investigated and Cij determination are given by DFT 
method. Y-parameters have then been determined for CaMg2 crystal structures in the homogenization 
of elastic properties. Results are as follows: 

(1) The calculated lattice parameters (a, b and c), the independent elastic constants, mechanical 
properties and the elastic anisotropy factor A are in very good agreement with the experimental 
literatures.  

 (2) The G/B ratio of shear modulus to bulk modulus at 0GPa is 0.663, which indicates slight 
brittleness of CaMg2 phase at zero pressure.  

(3) For Y parameter, when w2=1/3, E is 46.05GPa, which is equal to the result of Hill model. 
Therefore, using Y parameter method to study elastic moduli of CaMg2 phase is quietly feasible. 
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