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Abstract. The nonlinear dynamics analyses of a composite laminated cantilevered rectangular 
plate are studied, which is forced by the transverse excitation. We use the Hamilton’s principle 
and establish the nonlinear partial differential governing equations of motion for the composite 
laminated cantilevered rectangular plate. Numerical simulations are presented to investigate the 
effects of the transverse excitation on the steady-state responses of the cantilevered plate. The 
bifurcation diagrams of the composite laminated cantilevered plate for 1w  via the base 
excitation amplitude F is obtained. From the bifurcation diagram, it is found that the motions 
of the system are as follows: from periodic motion to multiple periodic motion, then to chaotic 
motion. Based on the above bifurcation diagrams and using the same parameters, the base 
excitation amplitude F are changed to obtain the waveforms, the two-dimensional phase 
portraits, the three-dimensional phase portraits and the Poincare maps of the system. The 
results of numerical simulation demonstrate that there exist the periodic and chaotic motions of 
the composite laminated cantilevered rectangular plate.  

1. Introduction 
With the increased use of composite laminated cantilevered plates in engineering fields, such as 
aeronautic and astronautic engineering, the research on the nonlinear dynamics of the composite 
laminated cantilevered plate plays a key role in engineering applications [1,2]. However, only a few 
studies on the bifurcations and chaotic dynamics of composite laminated cantilevered plate have been 
conducted. 

Bhimaraddi [3] studied the large amplitude nonlinear vibrations of imperfect antisymmetric 
angle-ply laminated plates. Zhang et al. [4] investigated the nonlinear oscillations and chaotic 
dynamics of a parametrically excited simply supported symmetric cross-ply laminated composite 
rectangular thin plate with the geometric nonlinearity and nonlinear damping. 

2.  Equations of motion 
As shown in Figure 1,a composite laminated cantilevered rectangular plate clamped at edge ob and 
subjected to the transverse excitation is considered, whose edge length and width in the x and y 
directions are, respectively, a and b and the thickness is h. The composite laminated cantilevered 
rectangular plate is considered as symmetric laminates with n layers. These layers are made of 
fiber-reinforced composite materials. It is assumed that different layers are perfectly bonded to each 
other. A Cartesian coordinate Oxyz is located in the middle surface of composite laminated 
cantilevered rectangular plate. The transverse excitation is represented by 0 cos( )F F t+ Ω . 
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Figure1 The simplified model of a cantilevered rectangular plate structure 

According to the Reddy’s classic deformation plate theory and the von Karman type equations for 
the geometric nonlinearity, the displacement field of the composite laminated cantilevered plate is 
assumed to be[5]： 

0 0
1 0 2 0 3 0( , , z, ) ( , , ) z , ( , , z, ) ( , , ) z , ( , , z, ) ( , , )w wu u x y t u x y t u v x y t v x y t u w x y t w x y t

x y
∂ ∂= = − = = − = =
∂ ∂

(1) 

where ( 1 2 3, ,u u u ) are the displacement components along the ( , ,x y z ) directions，( 0 0 0, ,u v w ) is the 
deflection of a point on the middle plane ( 0z = ). 

The nonlinear strain-displacement relations are given as follows 
2 21 1( ) , ( ) , ,

2 2
1 1 1( ), ( ), ( )
2 2 2

xx yy zz

xy yz xz

u w v w w
x x y y z

u v w w w v u w
y x x y y z z x

ε ε ε

ε ε ε

∂ ∂ ∂ ∂ ∂= + = + =
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

     (2) 

The stress–strain relationship of the composite laminated cantilevered plate is given 
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where ijQ is the elastic stiffness coefficient, shown as follows 
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where ( 1,2)iE i = is the elastic modulus, 12G is the shear modulus, 12ν and 21ν  are Poisson’s ratio for 
single layer materials . 

Using the Hamilton’s principle the nonlinear governing equations of motion for the composite 
laminated cantilevered plate are obtained as 
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(5) 

where, the dot represents partial differentiation with respect to time t, 3c  is the damping coefficient, 
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The stress-strain relations are given as follows 
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Where, because the ply mode of the composite laminated plate is symmetric, 0=ijB )6,2,1,( =ji . 
Substituting equation (7) into equation (5), the governing equations of motion in terms of 

generalized displacements are obtained as 
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where ( , )ij ijA D respectively are the stiffness elements of the composite laminated cantilevered 
piezoelectric rectangular plate, which are denoted as 
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The nonlinear dynamics of the composite laminated cantilevered plate in the first mode of 0 0,u v  
and the first four modes of 0w  are considered [6]. We write 0 0 0, ,u v w  in the following forms: 
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By means of the Galerkin method, neglecting all inertia terms in equation (9a), equation (9b) and 
equation (9c) about 0 0,u v , substituting equation (10) into equation (9), we obtain the expressions 

1 2,w w  as follows  
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3. Numerical simulation 
The fourth-order Runge-Kutta algorithm is employed to analyze numerically the nonlinear dynamic 
responses of the composite laminated cantilevered plate [7].  

The equation (11) is chosen for numerical simulation. The transverse excitation amplitude F is used 
as the controlling parameter to investigate the periodic and chaotic responses of the system. The 
physical parameters are chosen respectively as followingin table 1. 

When the transverse excitation amplitude F is located in the interval 22N–40N, the bifurcation 
diagram is obtained, as shown in Figure 2, in which the abscissa denotes the amplitude of the base 
excitation F, while the ordinate denotes the transverse deflection of the plate. Analyzing the Figure 2, 
the nonlinear dynamic responses of the composite laminated cantilevered plate change from the 
periodic motion to the multiple periodic motion, and then to the chaotic motions with the increase of 
the transverse excitation amplitude F.When the base excitation amplitude F exceed 36N, the multiple 
periodic motion and the chaotic motion appear alternately. 

Table 1 The physical parameters of the composite laminated cantilevered plate 
 physical quantity value physical quantity value 
 a  2m G12 6.0Gpa 
 b 1.2m 12ν  0.3 
 h 0.002m ρ  1850kg/m3 

 E1 

 

106Gpa 
 E2 4.5Gpa 

 
Figure2 The bifurcation diagram of the first mode of 0w for transverse excitation amplitude 

 
Figure3 The periodic motion of the system when F=28N 

In the following investigation, we use the same parameters and change the transverse excitation 
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amplitude F to obtain the waveforms, the two-dimensional phase portraits, and the Poincare maps of 
the composite laminated cantilevered plate based on Figure 2.When the transverse excitation F is 28N, 
Figure 3 shows the existence of the periodic motion for this system. When the transverse excitation F 
is 36N, the chaotic motion of the system is observed, as shown in Figure 4. 

  
Figure4 The chaotic motion of the system when F=36N 

4. Conclusion 
The nonlinear vibrations and chaotic responses of a composite laminated cantilevered plate subjected 
to the transverse excitation are investigated. Based on the von Karman type equations and the Reddy’s 
classic plate theory, we establish the governing equations of the system. Analytical study is given by 
using the fourth-order Runge-Kutta algorithm. The numerical results show that there exist the periodic, 
multiple periodic and chaotic motions of the system. From bifurcation diagram, it is found that 
transverse excitation amplitude F has significant influence on the system. Therefore, we can control 
the nonlinear dynamic responses of the composite laminated cantilevered plate by changing the value 
of transverse excitation amplitude F. 
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