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Abstract. In this paper, the deflection of a piezoelectric bimorph bender is controlled to track 

given time varying reference command solely utilizing direct acceleration measurement 

without integration. Novel estimator that directly applies acceleration measurement and 

controller that applies estimated state derivative signals have been developed in reciprocal state 

space (RSS) form. Simulations for the augmented system of both closed loop system and 

estimator have been carried out to successfully verify the proposed methods. The design 

approach in this paper is applicable to smart structures with accelerometers as sensors.  

1. Introduction 

Piezoelectric bimorph bender is a smart structure and can serve as both sensor and actuator in many 

electromechanical applications such as acoustic sensor, force sensor, vibration sensor [1], energy 

harvesting [2-3], minute robotic [4], and actuators [5]. Typically, the structure of a piezoelectric 

bimorph bender [6-7] is an elastic plate sandwiched between two piezoelectric plates and is mounted 

in a cantilever arrangement. In this paper, an accelerometer is installed on a piezoelectric bimorph 

bender as sensor. A novel estimator is designed based on the direct acceleration measurement. In 

addition, a novel tracking controller based on estimated state derivative is designed so that the 

deflection of the bimorph piezoelectric plate can track the time varying reference command. However, 

the proposed design objectives are not achievable applying traditional state feedback algorithms in the 

state space form as follows.   

uBxAx           (1a) 

kxu            (1b) 

Cxy            (1c) 

, where x, u and y are state, control and measurement, respectively. The reason is that acceleration 

measurement only can be modelled as state derivative. Therefore, people cannot apply available state 

related measurement feedback algorithms without using numerical integrations which will increase 

complexity and implement cost of controller.  

To directly utilize state derivative measurement in controller and estimator designs, the first author 

proposed the following reciprocal state space (RSS) form [8]. 

BuxAx             (2a) 

xku            (2c) 

xCy            (2c) 
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The name of RSS form was given because the open loop poles of system (2a) are the reciprocals of the 

eigenvalues of matrix A. In this paper, the vibrational tracking control of a piezoelectric bimorph plate 

is carried out in RSS form applying state derivative measurement in design.  

2. Modelling of a smart piezoelectric bimorph bender 

The smart piezoelectric bimorph bender in this research consists of a composite plate with 

piezoelectric actuation and a micro-machined accelerometer as sensor. We developed discrete model 

of the smart plate for both dynamic analysis and control designs of transverse vibration. The candidate 

composite plate in [9] has laminated design angles of [-55.66/43.62/4.18] and has six graphite/epoxy 

piles with length, width and thickness of 0.305, 0.076 and 210134.0   m, respectively. We model the 

smart plate in such a way that, 0.4 mm piezoelectric PVDF (polyvinylidene fluoride) material is 

distributed on both upper and lower surfaces of composite plate and one electrode serving as actuator 

is installed on upper surface while one micro-accelerometer serving as sensor is attached on the lower 

surface. Applying Hamilton’s law and using the first four shape functions in [10] and the physical 

properties of PVDF in [11], three sub-models are first built for the structural, electrical and coupling 

subsystems and then assembled to get the resultant discrete model as follows. 
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uCy a
           (3b) 

, where sM  and sK  are mass and stiffness matrices of the composite plate while pzM , pzK , uK and 

K   are PVDF mass and PVDF stiffness, coupling and capacitance matrices, respectively.   

In addition,  is related to the location of electrode and electric shape function which consistent with 

prescribed voltage/charge boundary conditions. Furthermore, u, eu  and q  are the generalized 

displacement vector, voltage across the PVDF and surface charge, respectively. Based on the location 

of micro-accelerometer and the first four mechanical shape functions in [10], one can get the sensor 

matrix aC  and acceleration measurement y. Details of modelling methods and techniques for smart 

plate are available in [12]. From the second equation in (3a), one can have 

uKKqKu ue 
11 

               (4) 

Substituting (4) into first equation in (3a), we have the following system in second order form. 

0)()(
11




DfKuuMqKKuKKKKKuMM uuupzspzs


         (5) 

, where 
1

KKD u  and qf  . 

3. Estimator design in RSS form 

Defining uxT [  
Tu] , system equation (5) is expressed in reciprocal state space form as follows. 
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0[y  xCxCa
 ]              (6b) 

To directly utilize the sensed acceleration signal without numerical integration, the following 

estimator in RSS form is proposed. 

)( yyLBfxAx


               (7a) 

xCy 
                (7b) 

, where x


 and x


 are the estimated state and estimated state derivative, respectively.  

The estimated state error is then defined as: 

xxe 


                (8) 

Subtracting (6a) from (7a), we get the following error dynamics of estimator in RSS form. 
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eLCAe )(                 (9) 

Therefore, once the estimator gain L  in (9) is properly designed, the estimation error will converge to 

zero. Consequently, full estimated state derivative feedback gain k in (10) is designed so that the 

closed loop system of smart piezoelectric bimorph bender is stable, namely, all system eigenvalues 

have negative real parts. 

xkf                (10) 

Combining (6)-(10), an augmented system equation of state and estimator error is obtained as follows. 
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Since tA in (26) is an upper triangle matrix, full estimated state derivative feedback gain k and 

estimator gain L  can be designed separately. The separation principle also holds for systems in 

reciprocal state space form. For the reciprocal state space system in (11), the eigenvalues of BkA   

should be designed as the reciprocals of desired closed loop eigenvalues while the eigenvalues of 

LCA  should be designed as the reciprocals of desired estimator eigenvalues. 

4. Tracking control design in reciprocal state space form  

The following tracking controller in (14) can work for the RSS system in (12-13) in following 

discussion. 

Plant: fBxAx               (12) 

Performance output: Hxz              (13) 

Tracking controller: Nrxkf  ̂            (14) 

, where x, x̂ , y, u and r are state vector, estimated state vector, sensor measurement vector, control 

vector and reference  command vector, respectively while z is the system performance output of 

interest, which must track the given reference command r. In (14), feedback gain k is first design to 

build a stable closed loop system, then feedforward gain N is designed to track the reference command.  

Note that if feedback gain k is not properly desgn and the closed loop system is not stable, no matter 

what feedforward gain N is designed, the performance output z can never well track the reference 

command r.  

In this paper, pole placement method in RSS form [13] is applied to design feedback gain k to ensure 

that the closed loop system is stable. When we applies pole placement design for RSS system in (12), 

the gain k must be designed such that the eigenvalues of )( BkA  are reciprocals of the desired closed 

loop eigenvalues. In addition, LQR [13] and sliding mode control [14] in RSS form developed by the 

first author can also be used to build a stable closed loop system. 

When the closed loop system is stable 0)(( x and )0)( e we have steady state as 

00)( BNrBNreBKxBkAx              (15) 

When the steady state of tracking error is zero, we have 

0)()( 0000  rHBNIHBNrrxHr           (16) 

Consequently, we have feedforward gain N as 
1

)(


 rightHBN              (17) 

, where
1)( 

rightHB is the right inverse of matrix HB.  

Suppose that HB is a nm full rank matrix and nm  . We have  
11 ))(()()(   TT

right HBHBHBHB            (18) 

Since feedforward gain N in (17) is independent of feedback gain k, the feedback gain k and 

feedforward gain N can be designed separately.  

5. Numerical Example  
The matrices of the model of piezoelectric bimorph bender in (5) are modelled as follows.  
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Suppose that the first generalized displacement is of interest, the performance output matrix H is then 

selected as follows. 

 00000001H  

Substituting the above matrices to the reciprocal state space system in (6a).  One can verify that the 

open loop system has zero damping and cannot track step command and time varying command 

t5sin2  by applying feedforward gain N alone as shown in figure 1 and 2.  
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Figure 1. Open loop step tracking 
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Figure 2. Open loop t5sin2  tracking 
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The desired poles of closed loop system are selected as i21 , i22  , i43 , i64   for both 

estimator and controller.  Therefore, feedback gain k in (14) and estimator gain L in (7a) are designed 

through pole placement method in such a way that the eigenvalues of )( BkA  and )( LCA   are the 

reciprocals of those desired poles. Consequently, the augmented system in (11) is built for simulation.  
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Figure 3. Closed loop step tracking 
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Figure 4. Closed loop t5sin2  tracking 

As anticipated, the proposed design can well track step command and time varying command t5sin2  

as shown in figure 3 and 4. Therefore, the proposed design approach is successfully verified. 
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6. Conclusion 

In this paper, the designs of novel estimator that directly employs acceleration measurement and 

tracking controller that applying estimated state derivative feedback in RSS form have been 

introduced. Simulations based on a model of piezoelectric bimorph bender have been performed to 

verify the proposed design approach. The piezoelectric bimorph bender that can deflect itself by 

following time varying reference command can be used as a lifting surface and communication 

antenna of aerospace vehicles and in many other applications. The proposed design approach is also 

suitable for applications of other smart structure with accelerometers as sensors. 
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