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Abstract 
Spring-back issues are critical in stamping procedures for advanced high strength steel. The spring-back 

can be comprehensively controlled by applying a newly designed hybrid bead to effectuate a post-stretching 

process in a U-channel part forming. Finite element forming simulation is applied in a cross-section to 

evaluate and optimize the hybrid bead performance, using DP980. A specific post-stretching die with the 

optimized hybrid bead was manufactured and applied to demonstrate the performances. Excellent spring-

back control and material restricting effect were observed in the stamping results. Both effects of clamping 

force and post-stretching amount are systematically studied, using 1.2mm DP980 and CP1180 AHSS 

sheets. Significant tonnage reduction was achieved, comparing to the original stinger bead design. An 

analytical solution was also applied to predict the same process with good correlation. 
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1. Introduction 

Spring-back is one of the critical issues in advanced high strength steel (AHSS) applications, frequently 

causing defects in cold formed parts. AHSSs’ higher level of stress and consequent elastic recovery in 

forming process severely hinder the applications comparing to mild steel [1,2]. Spring-back can be 

categorized into: a) angular change, b) sidewall curl, and c) twist based on part geometric changes.  

A typical U-bending process is widely applied in sheet metal forming, where the blank experiences 

a complicated loading history. Loading conditions of bending, un-bending, and stretching are all 

included during the forming process. Sidewall curl, as a severe cross-sectional spring-back, often 

appears after tool removal. Finite element (FE) simulation can usually give reliable results correlating 

with the actual stamped and sprung-back parts, and it has been applied for many different parts and 

forming scenarios [3–12]. It can also investigate material behaviors in different scales [13–16]. 

An important method to control cross-sectional spring-back in sheet metal forming for AHSS is to 

increase plastic deformation by applying stretch bending process. Its effect on spring-back reduction has 

been studied experimentally and theoretically [17]. It would be more efficient to reduce spring-back if 

the stretching part is applied at the late stage of forming, known as post-stretching [3,18]. It has been 

extensively applied recently and proved effective especially for AHSS [19,20]. A stinger-typed bead 

was developed to lock the material during this procedure [21]. 
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The objective of this manuscript is to further improve the spring-back controlling performance by 

optimize the post-stretching bead. FE method will be applied in the bead geometrical optimization 

process, based on an existed stinger-shaped bead. Experimental work will be conducted using a new 

post-stretching U-channel die, with the optimal bead incorporated. Multiple types of AHSSs will be 

applied. The effects of clamping force and post-stretching amount will be investigated, aiming at 

reducing the required machine tonnage. The experimental spring-back shapes would be digitally 

sketched for analyses, and also compared to analytical solutions. 

2. Post-stretching Mechanism and Process 

A post-stretching procedure is applied in the forming process to control the spring-back effect. A post-

stretching bead is designed to fully lock the material flow when the drawing procedure is almost 

finished, exerting an external stretching force. The part will experience pure stretching after the bead 

engagement. The post-stretching bead is aligned with the punchline. The binder is divided into outer 

and inner binders, where the post-stretching bead is located at the inner binder. A 10% gap is retained 

by applying forces to stop blocks between the outer binder and the die/upper binder. Nitrogen spring 

cylinders are applied to assist implementing the post-stretching procedure. The post-stretching 

procedure is initiated when the forming is nearly completed. Two different scenarios are available with 

accommodating die/punch motions. Both of them can equivalently form the same part. They are 

described as follows. 

a) The nitrogen spring cylinders are distributed underneath the inner binder to directly apply the 

clamping force to engage the post-stretching bead. The punch is supposed to be fixed during the entire 

stamping process. The binders and the die are supposed to move downward to form the part. The inner 

binder will be held stationary to form the post-stretching bead until the applied force exceeds the initial 

reaction force of the spring cylinders. The inner binder will move downward together with the outer 

binder and the die after bead engagement, to complete the rest of the part forming with a strong 

stretching. 

b) The nitrogen spring cylinders are distributed underneath the outer binder. The die piece, known 

as the upper binder, remains stationary, as well as the outer binder after its closing. The punch is in 

motion to form the part. The inner binder will be driven by the machine to engage the post-stretching 

bead forming, while the outer binder remains stationary and is under the pressure of the nitrogen spring 

cylinders. 

The scenario b) will be applied through this manuscript, including die design, experimental work and 

FE simulations. 

3. FE Simulation for Bead Optimization 

 

3.1. FE Model and Bead Geometries 

The post-stretching bead plays a critical role in restricting the material flow, which would be the 

prerequisite to conduct the post-stretching procedure. A 2D symmetric cross-sectional FE model is 

established in Abaqus to optimize the bead shape, starting with an original stinger-type bead design. It 

consists of three micro ridges embossed on the inner binder (known as “teeth”) with slightly various 

trapezoidal shapes. Each of them has cross-sectional dimensions of approximately 0.5mm by 0.5mm. It 

has been manufactured and applied in an actual stamping plant before. The teeth would penetrate into 

the blank material after bead engagement, exerting a lateral force to restrict the material flow. 

A modified bead design is described as follows. The middle tooth is moved to and embedded in the 

upper binder, staggering arranged between the other two teeth on the inner binder. Inversed shape of the 

middle tooth is debossed on the upper binder, opening two grooves as binder cavities. This design aims 

at generating a tiny waved-shape on the blank after bead engagement, along with material penetration 
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to synergistically enhance the material locking effect. A comparison between two designs is shown in 

Figure 1. 

 

Figure 1 Comparison between geometries of (a) original stinger bead and (b) the modified bead. The 

contours represent the von-Mises equivalent stress. Both geometries are proportionally scaled. 

The drawing process will be configured in the FE model. The outer and the upper binder are fixed in 

the model during the entire process. A concentrate force will be applied to the inner binder when the 

post-stretching procedure initiates. The magnitude of the concentrated force is defined as 2000N per 

unit length, which makes the teeth adequately intrude into the blank. The punch continues to move to 

the home position, finishing the entire drawing. The blank is then supposed to be under pure stretching 

in this stage, if the material flow restriction is strong enough. The mechanism is illustrated in Figure 2. 

 

Figure 2 The stamping process with post-stretching included. (a) The original position right before 

stamping initiation, (b) the blank after pure-drawing process, and (c) the formed part after post-

stretching. A magnified local area in sidewall is extracted in both subfigures (b) and (c), with a contour 

of absolute major stress. 

This step can be modeled alternatively by simply restrict the horizontal displacement at the bead 

position. The external force is immediately generated when the post-stretching procedure initiates. It is 

considered as an ideal case under fully-lock situation. It can then be compared to the cases using post-

stretching beads, for the purpose of bead performance evaluation. 

The blank is defined by 4-node bilinear plane strain elements with reduced integration (CPE4R). 

Tools are all modeled as rigid bodies. A friction coefficient μ=0.08 is applied. An experimental 1.4mm 

(a)

Original Stinger-typed Bead

Flat

Teeth

Two Teeth on Inner Binder

One Tooth on Upper Binder

1.4mm

1.4mm

(b)

Modified Bead

Blank

Punch

Die

Outer BinderInner Binder
Bead Area

(b) Drawing

(a) Original Position

(c) Post-stretching

Clamping Force Applied

Major Stress (Abs)



4

1234567890‘’“”

International Deep Drawing Research Group 37th Annual Conference IOP Publishing

IOP Conf. Series: Materials Science and Engineering 418 (2018) 012101 doi:10.1088/1757-899X/418/1/012101

gauged DP980 is applied as an isotropic material hardening rule, with von-Mises yield criterion. The 

model is conducted by Abaqus explicit solver, and then transferred to spring-back analysis using Abaqus 

standard solver.  

3.2. Bead Performance Evaluation 

Strong stress difference is observed during the drawing process mainly due to the bending-dominated 

deformation mode and its bending-unbending history. The inner surface is generally under compressive 

loading while the outer is under tension, except for the lower die radius area where the stress conditions 

are inversed. The inner and outer surface in the wall area extends and retracts respectively after the 

recoveries of elastic strain without or with minimum post-stretching involved. However, the inner side 

stress condition can be altered into tension if the part is post-stretched to a relatively high strain level. 

Now both sides consistently retract due to their tension statuses, yielding only minimum spring-back. 

 

Figure 3 Stress evolution curves during the forming depth after bead engagement. The absolute major 

stresses are extracted from both inner and outer sides of the sidewall. 

The evolution of sidewall stress difference during the post-stretching procedure can be illustrated in 

Figure 3. The shown contour indicates in-plane absolute major stress. Figure 3 compares the post-

stretching performances among different circumstances: a) ideally locked, b) the modified bead design, 

and c) the original stinger-typed bead design. The converging rate of stress difference can be used to 

evaluate the bead performance. The fastest evolution would be under case a). It can be immediately seen 

that the case b), the modified bead design, has its inner stress evolutional curve coincided with the ideal 

case a). Therefore, the modified bead design can be considered an optimal.  

4. Experimental Study of Post-stretching 

 

4.1. Test Configuration and Objective 

A lab-scale die was designed and manufactured for the post-stretching study, illustrated by Figure 4. 

The die is installed in SP225 Interlaken servo press machine located in AK Steel advanced engineering 

lab. The materials applied in this study are DP980 and CP1180, both are with 1.2mm gauge. A 100mm 

by 420mm rectangular blank is applied. A 20 Ton outer binder force is consistently applied for every 

case based on the combined pressure of the nitrogen spring cylinders.  
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Figure 4 The manufactured die with the modified bead and post-stretching process incorporated. (a) 

Original position from the front view, (b) original position, (c) during pure-drawing procedure, and (d) 

after part formed from the side view. 

4.2. Results and Analyses 

A designed test matrix with their results in sidewall curl angle is illustrated in Figure 5 and Figure 6. It 

demonstrates and summarizes both effects of clamping force and post-stretching amount. It can be seen 

that the spring-back behavior of the given U-channel is well controlled after approaching an effective 

post-stretching amount of 7mm. Its effectiveness can be ensured if a minimum sufficient clamping force 

of 0.1Ton/mm or 0.175Ton/mm for DP980 or CP1180, respectively. No apparent blank sliding can be 

observed if the clamping force exceeds the given lower boundaries. Occurrences of both bead damage 

and blank slivering would be highly possible under this circumstance. 

 

Figure 5 Contour of sidewall curl angles for 1.2mm DP980. A 0.1Ton/mm clamping force is considered 

minimally adequate. A 7mm effective post-stretching amount would be sufficient to control spring-back 

behavior. 
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Figure 6 Contour of sidewall curl angles for 1.2mm CP1180. A 0.175Ton/mm clamping force is 

considered minimally adequate. A 7mm effective post-stretching amount would be sufficient to control 

spring-back behavior. 

A few representative cases using the original stinger bead are compared to the optimized bead cases. 

Their results are shown in Figure 7. It can be immediately seen that its clamping effect is much less 

adequate than the optimized bead. A minimum clamping force of 0.2Ton/mm is required for DP980, 

which is 100% larger than the optimized bead case. The 100% clamping force increase (0.35Ton/mm) 

is still insufficient for fully restricting the material flow for CP1180, where apparent blank sliding is 

observed. A comparison of material sliding phenomena is depicted in Figure 7, between the original 

stinger bead and the optimized bead. 

 

Figure 7 Stamped U-channel part with post-stretching process. (a) Side view of the sprung U-channel 

with an effective post-stretching amount larger and equal to 7mm for both 1.2mm DP980 and CP1180, 

using the modified bead. The marked area is magnified in the rest of subfigures. (b) The bottom surface 

of the bead area, using 1.2mm DP980 and the original stinger bead with a clamping force of 0.1Ton/mm. 

(c) and (d) Top and bottom surfaces of the bead area, respectively, using the modified bead under the 

same scenario. (e) and (f) Same as (c) and (d), respectively, with 1.2mm CP1180 under a clamping force 

of 0.175Ton/mm. (g) Same as (b), with 1.2mm CP1180 under a clamping force of 0.35Ton/mm. (h) and 
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(i) side views of the bead area for 1.2mm DP980 under a clamping force of 0.1Ton/mm, using the 

modified and original beads, respectively. 

4.3. Hybrid Bead and Its Mechanism 

The experimental results give a good insight of the modified bead forming mechanism, as a counterpart 

of the simulation results in the previous section. Its bead forming includes two different patterns, a) 

material penetration by the sharp teeth, and b) waved-shape forming by the specific teeth arrangement. 

Both the indented teeth and the edges of the wave shape synergistically contribute to restrict material 

flow in that area. The optimized bead can then be renamed as “hybrid” bead, related to its mechanism. 

A small amount of post-stretching will be given after fully engagement, which induces strong plastic 

deformation to dominate the spring-back related elastic counterpart. The existed lock beads, either a 

stinger-typed bead or conventional draw bead, do not possess the described synergistic mechanisms of 

material locking. The hybrid bead combines both the advantages of stinger-typed bead and conventional 

draw bead, by a) bilaterally applying the material penetration force between both sides of the blank and 

b) generate a relatively shallow but effective waved-shaped corrugation to block the material flow.  

5. Analytical Solution of Spring-back 

An analytical model is developed for predicting the U-channel spring-back shape with post-stretching 

process. The model directly implements the material constitutive relationship to analytically compute 

the stress-strain statuses through the thickness, for different regions in the U-channel cross-section. The 

details of the model are described in another proceeding publication. The model input includes material 

card (hardening behavior), geometrical factors and post-stretching forces. The last one, specifically, can 

be indirectly obtained by the punch force from press machine individually for each case. 

 

Figure 8 Comparison between experimental and analytically predicted sprung-back shapes for 1.2mm 

DP980. The predicted results are very close to the tested ones. 

Figure 8 and compares the analytically predicted sprung-back shapes to the testes ones, which are 

digitally sketched. It can be seen that the predictions are very well correlated to the experimental ones 

for every case. A slight bulge can be observed in the experimental results between the punch radius and 

sidewall zones, especially under insufficient stretching forces. This is due to the gap between the die 

and punch surface, liberating a shred amount of material from contacting to the tool. This specific area 

is then free from bending and appears as a straight line segment. It would remain straight when no or 

weak post-stretching force is applied, generating the bulge. This is a local behavior that is not considered 

in the analytical solution, and does not significantly affect the spring-back results. 
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6. Conclusions 

A post-stretching process is developed and implemented in a U-channel stamping die. The spring-back 

behavior, including angular opening and sidewall curl, can be effectively controlled. An innovatively 

designed hybrid bead is applied in the post-stretching process. Cross-sectional FE simulations are 

conducted to assist the bead design optimization, using DP980 AHSS. A comprehensive study is 

conducted to investigate the effects of both post-stretching amount and clamping force. Experimental 

results show excellent spring-back controlling performance using 1.2mm DP980 and CP1180 AHSSs. 

The tonnage can then be significantly reduced. An analytical solution is also applied to predict the 

spring-back shapes, correlating very well with the experimental results. 
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