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Abstract. A methodology for stress-based forming limit analysis has been developed for 

advanced high strength steel (AHSS). It was proposed that localized necking occurs when a 

critical normal stress condition is met. Using a basic, isotropic material model (von Mises, 

power law hardening), the criterion was applied to various 980 Class AHSS. In most cases the 

simplified criterion adequately described the experimental strain-based forming limit curve 

(FLC). For AHSS with substantial volume fractions of metastable austenite, a more 

sophisticated material model and/or an adapted failure criterion will be required. A strong 

linear relationship was found between the critical normal stress and the measured true stress at 

maximum load in tension. This empirical functionality applies over a large range of strength 

levels and may form the basis for a methodology by which FLCs may be estimated from 

standard tension tests. Finally, in the context of the proposed failure criterion, the effects of 

work hardening behavior on the “shape” of the strain-based FLC are explored. 

1.  Introduction 

1.1.  Stress-based forming limits 

While an exhaustive review of sheet metal forming limit criteria is beyond the scope of this paper, the 

authors refer the reader to the compendium of Stoughton and Yoon [1] for more information. A brief 

timeline of strain-based and stress-based forming limit concept development follows. 

In 1964 Keeler and Backhofen [2] introduced the strain-based forming limit curve (FLC), and in 

the late 1960s, Nakazima et al. [3] first indicated the dynamic nature of strain-based FLCs. That is, 

strain-based FLCs generated under rectilinear strain path conditions generally do not apply to more 

complex, non-linear strain paths. In 1977 Kleemola and Pelkkikangas [4] first suggested that an 

intrinsic stress-based forming limit criterion exists—i.e. independent of strain path. Arrieux et al. [5] 

revealed the first compelling experimental evidence of a stress-based forming limit in 1982 and 

continued to develop this concept into the mid-1990s [6]. 

In the early 2000s, Stoughton revived stress-based formability assessment [7], where various 

researchers followed, e.g. [8]-[15]. A common approach is to transform an experimental strain-based 

FLC from strain space to stress space with known plane-stress plasticity relationships to achieve a 

stress-based forming limit curve (hereafter FLCσ). Panich et al. [16] used a similar approach to 

transform a strain-based fracture forming limit curve (FFLC) to a stress-based FFLC. 

Stoughton [16] explained that “the shape and location of the FLC in stress space” depends on the 

material model used for the strain-stress transformation. However, it was also explained that “the 
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degeneracy of the path-dependent strain-based curves to a single curve in stress space is such a strong 

physical phenomenon that it manifests itself in all material models tested.” Building upon work of 

Sing and Rao [18] , Matin et al. [8] recognized that FLCσ may be approximated by a “straight 

horizontal forming limit curve in two-dimensional principal stress space.” In other words the forming 

limit is reached when    (or   ) reaches a critical value, regardless of deformation history. 

1.2.   Scope 

In this analysis a simplified, stress-based forming limit criterion is proposed for advanced high 

strength steel (AHSS). After the suggestion of Matin et al. [8], it is assumed that localized necking 

occurs when a critical normal stress criterion is met. For added simplicity the von Mises yield function 

and power law work hardening are assumed. The applicability of the proposed criterion is assessed by 

fitting the forming limit model to experimental strain-based FLCs of 980 class AHSS materials. 

2.  Background 

2.1.  Material model 

For plane stress (    ), the von Mises expression for effective stress (    is often expressed as [10]: 

 

                    , (1) 

 

where   is the principal stress ratio      . In terms of total plastic strains, the effective strain (  ) is: 

 

      
 

 
         

   
    , (2) 

 

where   is the principal strain ratio      . The major strain (  ) and minor strain (  ) are aligned with 

   and   , respectively, and    is the thickness strain. For von Mises, the plane-stress flow rule gives: 

 

  
    

   
  (3) 

 

Furthermore, for “power law” work hardening, effective stress and effective strain are related by: 

 

                    
   (4) 

 

where K is the strength coefficient, and n is the work hardening exponent. 

2.2.  Stress-based forming limit criterion 

It is now assumed that localized necking occurs when    reaches a critical value (     ). By 

rearranging Equation (4), an expression for major strain at the forming limit is obtained: 

 

   
 

 
    

          

 
   (5) 

 

Thus, the entire FLC may now be mapped into strain space with knowledge of the power law 

coefficients (   ) and the critical normal stress (  ). For principal stress ratios ranging from     

(uniaxial tension) to     (balanced biaxial tension), the effect of   on the predicted strain-based 

FLC is shown in Figure 1, where    (unknown) is assumed equal to  . As   decreases, the FLC 

assumes a sharper V shape. A similar shape-dependence on   is captured in the classical deformation 

theory of Stören and Rice [19]-[21] and is often reflected in experimental data [22]-[24]. Furthermore, 

prior deformation (pre-strain) invariably results in a sharper V shape for the resultant FLC when 
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compared to non-pre-strained material—presumably accompanied by lower   values in the pre-

strained condition [6], [9], [13]-[14], [16]. In Figure 1,   = 0.1 and   = 0.25 are realistic work 

hardening exponents for advanced high strength steels and mild steels, respectively. The absurd values 

  = 1 and   = 100 are included simply as further exploration of the relationship between   and the 

shape of the strain-based FLC with respect to the proposed failure criterion and the assumed material 

model. For   = 1, the FLC becomes linear. For   > 1 the FLC exhibits downward curvature, and for   

>> 1 the FLC assumes asymptotically the form shown in Figure 1 for   = 100. As   approaches zero 

(not shown), the plane-strain forming limit (   at    = 0) approaches zero accordingly. 

 

 

Figure 1. Theoretical effect of the work 

hardening exponent ( ) on the strain-based 

forming limit curve. Here it is assumed that the 

critical normal stress (  ) is equal to the strength 

coefficient ( ). See text for details. 

 

Figure 2 shows the relationship between the expanded von Mises plane stress yield locus (isotropic 

hardening) and the proposed failure criterion in the tension-tension quadrant. Here the yield locus has 

intersected the failure “square” in plane strain, and it is assumed that σ
*
 is the same in the σ1 and σ2 

direction. The yield locus is inside the square for other stress states at the same equivalent strain. In 

other words, failure occurs at the lowest effective strain in plane strain. This observation, in part, 

accounts for the V shape of the strain-based forming limit curve for realistic values of n (Figure 1). 

Table 1 shows stress-strain relationships for various plane-stress deformation modes at σ1 = σ
*
. 

 

 

Figure 2. Tension-tension quadrant of the 

expanded von Mises plane stress yield locus 

(isotropic hardening), where    and    are 

normalized to the critical normal stress (  ). Here 

   and    have reached    in plane strain for 

          and 2.0, respectively (arrows). 

 

Table 1. Stress-strain relationships for various plane-stress deformation modes (σ1 = σ
*
) 

Mode
a
              

UT 0 -0.5        
        

 
            

PS 0.5 0              
              

 
                  

BB 1 1                   
a
 UT = uniaxial tension, PS = plane strain, BB = balanced biaxial stretching 
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Figure 3 illustrates the sigmoidal relationship between the work hardening exponent ( ) and the 

plane strain (PS) forming limit (    ) for    =  . Here the forming limits in uniaxial tension (UT) 

and balanced biaxial tension (BB) are constant (UT:    = 1.0,    = -0.5; BB:    = 0.5,    = 0.5). At   = 

1 (linear FLC),      is 0.75, and as    ∞,      approaches the value 0.8660 = (3/4)
0.5

. The 

relationships in Figure 3 apply only to the chosen material model and the proposed failure criterion. 

 

 

Figure 3. Theoretical effect of the work 

hardening exponent ( ) on the plane strain (PS) 

forming limit (    ) for    = K. The constant 

major strain values for uniaxial tension (UT) and 

balanced biaxial tension (BB) stress states are 

shown for reference. See text for details. 

2.3.  Extension beyond the tension-tension quadrant  

The critical normal stress failure criterion is identical in form to several other established failure 

criteria within the tension-tension plane-stress quadrant (Figure 2). The difference is that the proposed 

criterion is applied to localized necking rather than to yielding or fracture. The Mohr-Coulomb (M-C) 

criterion [25]-[26] was developed in the context of soil and rock mechanics and is commonly used to 

describe the fracture response of brittle materials to combined shear and normal stresses. Over the past 

decade, Bai and Wierzbicki [27] have pioneered the application of the M-C criterion to ductile 

fracture—i.e. the Modified Mohr-Coulomb (MMC) fracture model. The classic M-C criterion 

indicates that failure will occur at a critical combination of shear stress (τ) and normal stress (σn), or 

 

         , (6) 

 

where c1 and c2 are material constants. For c1 = 0, the M-C criterion reduces to the Tresca maximum 

shear stress criterion [28]. At the other extreme is the Rankine criterion [29], where it is assumed that 

failure will occur when the maximum principal stress at any point reaches a critical value.   

Figure 4 is a schematic Mohr’s circle representation that illustrates the possible effects of 

compression on the proposed localized necking failure criterion. In Figure 4a, uniaxial tension (UT) is 

shown for reference, where the failure criterion is met at σ1 = σ
*
 and τmax = σ

*
/2. In this case the Mohr-

Coulomb, Tresca and Rankine criteria are equivalent. The anticipated effects of superposed uniaxial 

compression (UC) are shown in Figure 4b (Tresca), Figure 4c (Rankine) and Figure 4d (M-C). The 

UC component may be imagined either as an in-plane compressive stress (e.g. deep drawing or shear) 

or as a tooling contact stress normal to the sheet surface. For the Tresca criterion, the maximum shear 

stress at failure is the same as in uniaxial tension (τmax = σ1/2), but the maximum normal stress is less 

than the critical normal stress (σ1 < σ
*
). For the Rankine criterion, the maximum normal stress at 

failure is the same as in uniaxial tension (σ1 = σ
*
), and the maximum shear stress is larger (τmax > σ

*
/2). 

For the Mohr-Coulomb criterion, the maximum shear stress at failure is larger than in uniaxial tension 

(τmax > σ
*
/2), while the maximum normal stress is smaller (σ1 < σ

*
). 

At this time the authors make no explicit assumptions regarding the most appropriate form of the 

proposed failure criterion outside the tension-tension quadrant. In the context of incremental sheet 

forming, Emmens et al. [30] explained that the strain-based FLC is only valid with certain restrictions, 

namely: (A) linear strain path, (B) absence of bending, (C) absence of through-thickness shear, and 

(D) plane-stress condition. They commented further that both shear and contact stresses change the 
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stress state and that both lower the yield stress in tension and raise the necking limit. Recently Min et 

al. [31] presented a methodology to compensate for the combined effects of curvature, non-linear 

strain path and contact pressure when contrasting strain-based FLCs measured with Nakajima-type 

tooling and Marciniak-type tooling. They showed that with proper consideration, the Nakajima-type 

FLC (curvature, non-linear strain path, contact pressure) reduced to the Marciniak-type FLC (in-plane 

deformation, quasi-linear strain path, no contact pressure). 

 

  

  
Figure 4. Mohr’s circle representation illustrating the effects of compression on the proposed failure 

criterion: UT = uniaxial tension; UC = uniaxial compression. See text for details. 

3.  Materials and procedures 

3.1.  Materials 

Four 980 Class AHSS materials were considered in this analysis, and the basic tensile properties are 

listed in Table 2. All materials were produced through cold-rolling at U. S. Steel Gary Works in Gary, 

IN, USA and finished at the PRO-TEC Coating Company continuous annealing line in Leipsic, OH, 

USA. Materials A and B are conventional multi-phase steels, where “HY” indicates a high yield 

strength version (i.e. 980-HY), and for Material B “(LCE)” indicates a low carbon equivalent. Material 

C (980 TBF) is a TRIP-assisted bainite/ferrite steel (TRIP = transformation-induced plasticity). 

Material D (USS 980 GEN3) is a third generation advanced high strength steel or “3
rd

 GEN AHSS” 

[32] with an exceptional combination of strength and ductility. Here the prefix “USS” indicates a 

specific type of 3
rd

 GEN AHSS manufactured exclusively by United States Steel Corporation. 

  

Table 2. Basic tensile properties
a
 

ID Material t, mm YS, MPa UTS, MPa UE, % TE, % 

A 980-HY 1.4 714 1040 8.5 14.0 

B 980-HY (LCE) 1.5 764 1042 6.4 11.4 

C 980 TBF 1.4 863 1081 8.5 12.9 

D USS 980 GEN3 1.4 655 1020 16.7 21.6 
a
 ASTM standard [33]; transverse orientation; t = nominal thickness; YS = yield strength; 

UTS = ultimate tensile strength; UE = uniform elongation; TE = total elongation  
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3.2.  Strain-based forming limit measurements 

Experimental strain-based forming limits were measured according to ISO Standard 12004-2 [34]. A 

Marciniak-type punch and carrier blank configuration was used with a digital image correlation (DIC) 

strain measurement system. In contrast to a Nakazima-type hemispherical (dome) punch, the 

Marciniak configuration eliminates specimen curvature and friction in the area of interest and provides 

a nearly linear (proportional) strain path to failure [35]. For each material six specimen types (widths) 

were utilized to achieve a range of strain paths, and three specimens were tested for each specimen 

type. Further details regarding the experimental method are given by Huang and Shi [36]. 

3.3.  Determining the critical normal stress (  ) 

It is well-known that diffuse necking begins at maximum load during a uniaxial tension test [37]. At 

this critical moment, the work hardening rate         is equal to the true flow stress    , and, for 

power law work hardening, the work hardening exponent     is equal to the true strain    , or  

 

 
  

  
                            (7) 

 

The subscript “u” may be used to designate “ultimate load” (or UTS or uniform elongation). As such, 

   is the work hardening exponent at maximum load, and    is the true stress at maximum load, and 

   is the strength coefficient at maximum load, where 

 

           
    

   
             

    

   
       

  
    

  
  (8) 

 

Upon rearranging Equation 5 and substituting       for    , the critical normal stress (  ) is: 

 

   
  

 
    

       

  
   (9) 

 

3.4.  Constructing the Model FLC 

The nearest-to-plane-strain (NTPS) forming limit (   closest to zero) is used to “anchor” or calibrate 

the model to the experimental strain-based FLC. Equation 9 is solved for the NTPS forming limit to 

find the critical normal stress. Subsequently the Model FLC is constructed by applying Equation 5 for  

various stress states ranging from   = 0 (UT) through   = 1 (BB) with   and   equal to    and   , 

respectively. The basic procedure to construct the Model FLC is summarized in Table 3. 

 

Table 3. Procedure to construct the Model FLC 

Step Description: Comments 

1 Tension test: Determine   ,    and    

2 Measure experimental FLC: Determine the NTPS forming limit
a
 

3 Calculate   : Solve Equation 9 for the NTPS forming limit 

4 Construct Model FLC: Apply Equation 5 (               ) 
a
 NTPS = nearest to plane strain (   closest to zero) 

As a practical matter, the NTPS data are typically at or near the minimum of the strain-based FLC, 

and the corresponding major strain values are not exorbitantly different from the uniform elongation 

(UE) in magnitude (Equation 8). As such, extrapolation from the UE value in tension to the plane 

strain forming limit should be more accurate than if the calibration were performed in another 

deformation mode with much larger major strain values—e.g. uniaxial tension or balanced biaxial 

stretching. The authors credit an anonymous manuscript reviewer for this rather astute observation.    
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4.  Results and discussion 

4.1.  Strain-based FLCs 

Strain-based forming limit diagrams are presented in Figure 5, where experimental forming limits and 

the Model FLC are shown for each material. The Model FLC adequately describes the experimental 

forming limit data in three of four cases (materials A, B, C). For material D (USS 980 GEN3), the 

Model FLC generally under-predicts the forming limit for biaxial stretching conditions (   > 0). 

 

  

  
Figure 5. Forming limit diagrams for materials A through D. For each case, the heavy, dashed curve 

is the FLC derived from the critical normal stress criterion (Model FLC). The Model FLC is 

anchored by the nearest-to-plane-strain (NTPS) experimental forming limit. The thin, continuous 

curves define 95% confidence bands based on the NTPS forming limit data (±2σ, n=3). Filled 

symbols (●): Average for each specimen type; Unfilled symbols (○): Individual test results. 

 

The microstructure of USS 980 GEN3—like most other third generation advanced high strength 

steels—contains a substantial amount of austenite (> 10%). As such this material derives exceptional 

properties in part from the TRIP effect (transformation-induced plasticity), where metastable austenite 

transforms into martensite during deformation. As the proposed methodology appears suitable for 

conventional AHSS materials, it is likely that special consideration will be required for materials with 

higher levels of retained austenite. While material C (980 TBF) is considered a “TRIP-assisted” 

AHSS, the amount of retained austenite is much lower (< 5%) than that of USS 980 GEN3. 

4.2.  Property relationships 

The ultimate load properties (Equation 8) and the critical normal stress (Equation 9) for each material 

are listed in Table 4. It was observed that the ratio σ
*
/σu is around 1.2 for all four materials. Also, for 

materials A, B and C, the ratio σ
*
/Ku is greater than 0.95, while that of material D is 0.90. As a 

reminder, for power law work hardening (Equation 4), the strength coefficient ( ) is equivalent to the 

effective stress (  ) at an effective strain (  ) of 1.0. As such, the ratio σ
*
/Ku is an important indicator of 
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relative behavior. If this ratio is lower, the critical normal stress is reached “sooner”, with respect to 

  . If this ratio is higher, localized necking is deferred to a higher relative stress value. 

 

Table 4. Model FLC parameters: Critical normal stress criterion 

ID Material 
t 

mm 
   

   
MPa 

   
MPa 

   
MPa 

            

A 980-HY 1.4 0.081 1128 1383 1357 1.20 0.98 

B 980-HY (LCE) 1.5 0.062 1109 1316 1321 1.19 1.00 

C 980 TBF 1.4 0.082 1173 1439 1393 1.19 0.96 

D USS 980 GEN3 1.4 0.154 1190 1587 1424 1.20 0.90 

 

Figure 5 shows a strong linear relationship between the critical normal stress (  ) and the measured 

true stress at maximum load (  ) over a range of strength levels. The 780 and 1180 Class AHSS 

materials were evaluated in a separate analysis [36]. This empirical functionality suggests the basis for 

a simple methodology by which strain-based FLCs may be estimated from a standard tension test. 

 

 

Figure 6. Linear relationship between the critical 

normal stress (  ) and the measured true stress at 

maximum load in a tension test (    over a range 

of strength levels. Average values for the 980 

Class AHSS materials are listed in Table 4. 

4.3.  Outlook 

Considering the simplifying assumptions made, the results of this analysis are very encouraging. A 

more sophisticated material model, an adapted failure criterion, and/or an alternative strain-based FLC 

measurement method would affect the observed relationships. Other uncertainties in the current 

analysis include the proportionality of the imposed strain paths, variation in tensile properties and the 

suitability of the strain-based forming limit measurement system itself. Further development of this 

concept may include: extension beyond the plane-stress tension-tension quadrant; extension to 

Nakajima-type testing; consideration of critical normal stress anisotropy in relation to measured tensile 

properties and forming limits (e.g. rolling direction vs. transverse direction); and further consideration 

of the effects of retained austenite in third generation advanced high strength steels. 

5.  Summary and conclusions 

A methodology for stress-based forming limit analysis has been developed for advanced high strength 

steel (AHSS). It was proposed that localized necking occurs when a critical normal stress condition is 

met. Using a basic, isotropic material model (von Mises yield function, power law hardening), the 

criterion was applied to four 980 Class AHSS materials. The following conclusions were drawn: 

 

1. The proposed stress-based failure criterion adequately described the experimental strain-based 

forming limit data in three of four cases. 

2. For third generation AHSS materials with substantial volume fractions of metastable austenite, 

a more sophisticated material model and/or an adapted failure criterion will be required. 
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3. A strong linear relationship was found between the critical normal stress (σ
*
) and the measured 

true stress at maximum load in tension (σu). This empirical functionality applies over a large 

range of strength levels and may form the basis for a methodology by which FLCs can be 

estimated from standard tension tests. 
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