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Abstract. A mathematical model is presented for a forming limit for non-proportional loading 

under plane stress condition. The model results in an approach to reduce the number of 

experiments needed for the Generalized Forming Limit Concept (GFLC) and presents a 

numerical approach to calculate the linearized FLC from real Nakajima measurements. The 

mathematical model has been analyzed in comparison to Polar Effective Plastic Strain (PEPS) 

diagram and enhanced Modified Maximum Force Criterion (eMMFC), discussing both 

consistency with plasticity modeling and industrial applicability. An experimental setup based 

on Nakajima specimens is presented and DIC measurements are used to capture loading paths. 

The measured loading paths are used to validate predictions made by PEPS, eMMFC and the 

presented mathematical approach. The latter model shows promising results for prediction of 

failure for non-proportional loading. 

1.  Introduction  

Correct prediction of localization failure in sheet metal forming is well established with the use of the 

forming limit curve (FLC) for proportional loading. Within the field of FLC determination, the three 

major influences discussed are non-proportional loading, curvature and pressure effects. Min et al. [1] 

presented an extended model to compensate for these effects which was applied to Marciniak [2] test 

and both large and small Nakajima test. The presented model however remains within the framework of 

GFLC, and focuses on non-proportional loading. The effect of non-proportional loading has first been 

shown by Nakazima et al. [3], with ongoing research presented by Stoughton and Yoon [4], Yoshida et 

al. [5] and Zhu et al. [6]. Failure prediction for non-proportional loading remains a field of extensive 

international research with a variety of models presented and industrially applied. This publication aims 

to contribute to the ongoing research by proposing an approach to reduce experimental effort within the 

framework of the GFLC model. To be able to evaluate the model, its performance is compared to two 

other established approaches, eMMFC and PEPS.  

2.  Derivation of analytical model  

The modeling approach presented is based on damage accumulation along the path of failure up to the 

point of localization. A damage accumulation parameter λ is introduced as by Volk and Suh [7], which 

is equal to one at the point of localization. The variable accumulated is a ratio of incremental effective 
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plastic strain to a reference function, representing the limit of effective plastic strain in dependency of 

the incremental strain ratio β for ideally linear loading paths. The ratio β can be determined either 

directly as a function of the measured strain increments or in dependency of an arbitrary, convex yield 

locus function Φ as seen in Equation (1). 

 

 β=
Δϵ2

Δϵ1
=

∂Φ(σ1,σ2)/∂σ2

∂Φ(σ1,σ2)/∂σ1
 (1) 

 

Additionally, two common auxiliary functions are introduced. The variable f represents the ratio of first 

principal stress to equivalent stress as a function of the yield locus as proposed by Volk and Suh [7] as 

f(α)=1/Φ(1,α) and the variable g(β)=(1+αβ)f=Δϵv/Δϵ1 as derived from work equivalence in Hora et al. 

[8]. Despite the difference that the GFLC accumulates the lengths li, the two models are identical under 

plane stress assumption. This is shown in equation (2) using the definitions of β and g(β).  

 

 λ= ∑
Δli

lflc(βi)
= ∑

√Δϵ1
2+Δϵ2

2

√ϵ1flc
2 +ϵ2flc

2
= ∑

Δϵ1√1+βi
2

ϵ1flc(βi)√1+βi
2
= ∑

Δϵ1

ϵ1flc(βi)
 = ∑

g(βi)Δϵ1

g(βi)ϵ1flc(βi)
 = ∑

Δϵvi

ϵvflc
(βi)

 (2) 

 

The GFLC model continues from this general approach by taking the measured FLC without 

prestrain as reference curve. By definition, this returns λ=1 when the reference curve is reached on a 

linear path. However this reference curve is not sufficient for non-proportional loading paths, as λ<1 is 

discovered at failure along bilinear paths. To adjust λ to be equal to one at the instance of localization, 

FLCs are measured for different preloading amount and direction and bilinear interpolation is used to 

return an estimate for any combination not experimentally tested. The resulting metamodel has been 

verified and has found industrial application. 

The adjustment taken in this publication aims at a reduction of FLC measurements by changing one 

basic assumption: the basic Nakajima experiment for FLC evaluation does not yield an entirely linear 

loading path. In fact, all loading paths in Nakajima testing follow a biaxial loading direction prior to the 

designated loading direction and all Nakajima paths turn towards plane strain loading prior to localized 

necking as later discussed in Figure 2 (a). We now aim to take advantage of the known non-linearity 

intrinsic to Nakajima testing to return a reference FLC for truly linear paths by defining the sought after 

linear FLC as the objective of a mathematical optimization. The information needed to extract the 

reference FLC are the loading paths of the Nakajima specimen and their respective point of localization. 

To be able to formulate an optimization problem, it is most effective to define the forming limit ϵvflc as 

a function of β. In this publication a polynomial of 4th order is chosen, the coefficients of which are 

adjusted in the optimization. It lies within the nature of mathematical optimization that any function 

may be chosen that is able to represent the desired FLC shape. The polynomial approach is an example 

of one possible approach. The parameters λi represent the accumulated damage parameter for each strain 

path used in the optimization and λ is a vector thereof. 

 

 min
x

Ε(x) =
1

2
‖λ(x,β)-1‖2, x=[a,b,c,d,e] (3) 

 λi= ∑
Δϵvi

ϵvflc
(x,βi)

 ,  ϵvflc
(x,β

i
)=aβ

4
+bβ

3
+cβ

2
+dβ+e  

 

As starting points, the coefficients of a fit of the standard FLC are used. For mathematical 

convenience, this fit occurs in β-ϵv space. The optimizer is a nonlinear least-square solver. No boundary 

constraints are set and a trust-region-reflective solver is used. The largest resulting error Ε(x) is 1.55E-4. 
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Under the assumption, that the inherent non-linearity in Nakajima testing is enough to represent general 

cases of non-linear loading conditions, the resulting FLC may be used for arbitrary loading paths as a 

reference FLC. 

 

Table 1. Material parameters for 4xxx-alloy aluminium. YLD2000 and Gosh hardening. 

α1 α2 α3 α4 α5 α6 α7 α8 a 

0.9285 0.9718 0.7253 0.9919 0.9766 0.7847 0.9414 1.2365 8 

         

A [MPa] B [-] n [-] C [MPa] 
σyGosh

=A(B+ϵv)n-C 
713.96 0.0052 0.0635 444.12 

 

3.  Example of FLC evaluation  

To be able to discuss the validity of the model, it is applied to a standard 4xxx-aluminum alloy without 

strain rate dependency. The material behavior is described using a YLD2000 type yield locus as 

introduced by Barlat and Yoon [9] with the parameters given in Table 1. While it is not used in the 

model presented, the yield curve parameters of a Gosh type approximation are given as well. These will 

be used for comparison with the eMMFC model as proposed by Hora and Tong [10] and studied by 

Manopulo et al. [11]. Both yield curve and yield locus are displayed in Figure 1 (a) and (b) respectively. 

The material tested has a thickness of 1 mm. 

 

  

(a) (b) 

Figure 1. Yield curve (a) and yield locus (b) of the alloy used in all experiments. 

 

For the determination of the linear FLC, three strain paths for the Nakajima configurations of 

standard widths B20, B50, B80, B90, B100, B120 and B200 were obtained and are used in the 

optimization process. Figure 2 (b) shows the respective loading paths in a β - ϵv space as introduced by 

Zeng et al. [12], this space is chosen precisely for its emphasis on path changes. It represents an 

alternative to the widely used triaxiality based η - ϵv representation space. Figure 2 (a) also includes the 

FLC based on the cross-section method according to ISO12004 [13] in major strain space and the back-

transformation of the optimized linear FLC for reader convenience. Both curves are identically displayed 

in β-ϵv space, where optimization has taken place. We discover, that the minimum of the FLC has 

significantly moved towards the perfect plane strain state (β=0 or ϵ2=0). From first observation, we 

conclude that the optimization has returned a reasonable result, as the minimum occurs in plane strain 

state. The abrupt changes to the paths in β-ϵv space are due to the fact that β is the ratio of incremental 

major strains. Consequently, the major strains rotate if Δϵ2>Δϵ1. 
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(a) (b) 

 
Figure 2. Measured strain paths of Nakajima specimen used in optimization. First in major strain space 

(a) and additionally in β-ϵv space (b). Both Figures show both the measured and the optimized FLC. 

 

4.  Comparison to first experimental results 

Bilinear strain paths were measured for both 10% and 15% prestrain in tensile direction followed by a 

reduced set of Mini-Nakajima specimen in B200, B100 and B50 configuration as shown in Figure 3. 

These experiments are identical to Nakajima experiments scaled by a factor of 0.5, with the longer side 

equal to 100mm. For thin sheet material, the plane stress assumption remains valid, making Mini-

Nakajima experiments more cost-effective. Additionally, since the model is designed to predict arbitrary 

paths, it is unnecessary to remain within the bounds of standard experiments. As long as the full 

deformation path is captured, any deformation that leads to localization is valid. Figure 4 shows the 

measured nonlinear paths in β-ϵv space with the measured failure position of the experiments marked in 

red and that of the proposed model in blue. The model clearly shows the correct tendencies, however, 

the result is conservative, as failure is predicted prior to the measured failure position. For reference the 

optimized FLC is shown in black. 

 

(a) 

 

(b) 

 
 Figure 3. MiniNakajima experimental specimen for bilinear path 

evaluation (b) and tensile prestrain specimen (a). 
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Figure 4. Measured nonlinear paths in β-ϵv space with measured (blue 

dots) and evaluated (red squares) failure points. 

 

5.  A comparative study  

To put the results in perspective, a comparison with other models for nonlinear paths is drawn. Two 

additional models, eMMFC by Hora and Tong [10] and PEPS by Stoughton and Yoon [4] will be looked 

at in detail. For reader convenience, the eMMFC model for nonlinear paths and the PEPS model will be 

briefly summarized. 

5.1.  Enhanced Modified Maximum Force Criterion for non-proportional loading 

The numerical implementation of the eMMFC criterion is defined incrementally and can be directly 

used for non-proportional loading paths. The general eMMFC criterion is given in equation (4), followed 

by its numerical form in equation (5) with H and H’ representing the yield curve and its derivative. The 

reference curvature ρ
0
 is implemented as discussed by Hora et al. [14] and is set to 25mm for Mini-

Nakajima specimens, t represents the current thickness and t0 is the initial thickness. To apply the 

eMMFC formulation to an arbitrary given loading path, the same algorithm may be used as for standard 

MMFC as introduced by Hora [8]. MMFC searches for the instance of localization along strictly linear 

paths until the maximum force criterion dF ≤ 0 is met. To search for localization along arbitrary paths, 

the measured increments of β and ϵv are used to check the criterion. The material constants E0, and n 

are set to 0.1 and 0.6 respectively, as empirically determined by Hora and Tong [10]. For an arbitrary 

path given, the criterion is evaluated for each point along the path until the condition is met. The resulting 

points of localization are given in Figure 6 in direct comparison to PEPS and the new model. 

 

 
∂σ1

∂ϵ1
∙ [1+

t

2ρ0

+
E0

2
(

t

t0
)

n

] +
∂σ1

∂β

∂β

∂ϵ1
≤σ1 (4) 

 f(α)H'g(β)∙ [1+
t

2ρ0

+
E0

2
(

t

t0
)

n

] ≤f(α)H+
f
'(α)g(β)β

β
'(α)ϵv

H (5) 
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Figure 5. The loading paths in polar EPS space and indicates the points of failure 

at intersection with the measured FLC. 

 

5.2.  Polar strain diagram for failure evaluation 

The polar strain diagram, as proposed by Stoughton and Yoon [4], suggests that in the space of angle θ 

and effective plastic strain 𝜖𝑣, the same limit curve is valid for arbitrary paths. This is experimentally 

shown by transformation of a large number of measured strain paths by Stoughton and Yoon [4]. The 

angle θ is defined as θ=arctan(β). Figure 5 shows the result in the polar space directly. However, to 

compare measurements, the position of failure along the path is also displayed in major strain space in 

Figure 6. 

 

5.3.  Discussion of comparative study 

To evaluate the failure position along each strain path, the cross-section method was used. The 

surprisingly high strain values for the combination of tensile prestrain and biaxial second drawing 

remain under investigation. A possible explanation has been given by Min et al. [1] by studying the 

effect of contact pressure on both large and small Nakajima specimen. It is expected, that an extension 

of the model to include pressure effects will further improve the linearized FLC.  

As presented in Figure 6, both eMMFC and PEPS show similar results for the majority of strain paths 

tested. The presented model shows good agreement with the measured failure for all except the biaxial 

cases, indicating that the model presented provides a valid approach to reduce the effect of non-

proportional loading. The three models may be evaluated without a large number of experiments 

necessary, as they are based only on the Nakajima experiments done for standard FLC evaluation. In 

comparison to standard GFLC, this approach offers one possibility to reduce the amount of experiments. 
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Figure 6. The failure prediction of all models discussed in FLD 

space. 

 

6.  Conclusion and outlook 

The presented mathematical optimization using a 4th order polynomial as approximation for a linearized 

FLC is a first approach and initial testing of an additional model for determination of linearized FLCs. 

The model indicates the correct tendency to extract non-linearity from optically measured strain paths. 

As predominant contribution, an increase in measuring efficiency may be achieved by decreasing the 

number of necessary experiments in the framework of the GFLC. For a quantified analysis of robustness 

and precision of the model, further experiments are needed with different alloys and other sheet 

materials. Furthermore, effects of curvature and contact pressure will need to be taken into account. To 

be able to validate extended model approaches, standard and Mini-Nakajima experiments are planned 

for a number of materials to compare results and consequently adjust the current model. 
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