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Abstract. The present research was aimed to evaluate the formability of aluminium alloy 5083-

O sheet. Two-dimensional DIC method was used to measure the strain field of uniaxial tensile 

specimens. The flow stress equation was obtained on the base of these measured strain and stress 

data. The influence of virtual gauge on strain measurement was analysed. The hemispherical 

punch tests were conducted, where three-dimensional DIC was used to measure the strains on 

the forming regions of aluminium sheets. The FLD of aluminium alloy 5083-O was established 

using these measured strain data. The data derived from the tests were applied in FE simulations 

of the inner panel of a car body. Comparison between the results of the experiments and the 

simulations showed that the necking and fracture of the aluminium alloy component during 

stamping could be accurately predicted. 

1.  Introduction 

To reduce the fuel consumption, the application of light-weight structural materials such as aluminium 

alloys has become one of the hot spots in automobile industry [1]. Thanks to their excellent properties 

of high specific-strength, good corrosion resistance and weldability, aluminium-magnesium (Al-Mg) 

alloy sheets are extensively used in the automotive industry, as the substitute of steel sheets. 

Traditionally, the aluminium parts of a car, such as engines, wheels, exhaust decor, were produced by 

casting. Nowadays, more and more wrought aluminium products in sheets are applied in the car body, 

such as exterior panels, door and heat insulators. Compared with the mild steel sheet, the aluminium 

alloy sheet has lower formability, higher springback and surface sensitivity when it comes into contact 

with forming die or tool [2]. Therefore, the warm or hot forming of aluminium alloys was employed [3, 

4]. Some new problems, which arise from the heating of tool and sheet and the microstructure evolution 

of the formed sheet, are encountered in the warm or hot forming of aluminium alloy sheet. However, 

given the low cost, high efficiency and good performance of the product, the forming at room 

temperature is still favoured.  

Some exterior and inner panels of an automotive body are formed primarily by stretching. Forming 

limit diagram (FLD) characterizes the formability of a sheet material undergoing strains to necking 

failure. Traditional methods of strain measurement by marking or etching grids on the surface of a metal 

sheet lead to low resolution and measurement accuracy [2]. Recently, the digital image correlation (DIC) 

technology has been applied in the measurement of strain field and proved to be superior to the 
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traditional methods [3,4]. Combined with the CCD (charge-coupled device) image acquiring technology 

and computer image analysis, DIC becomes a new full-field strain measurement method [5,6]. 

The present research aims at evaluating the formability of aluminium alloy 5083-O sheet. It is an 

aluminium alloy of the non-heat treatable Al-Mg with optimum strength and corrosion resistance and is 

used in the automotive body. The 2-D DIC measurement system was applied in strain measurement 

during tensile tests. The ball punch deformation was used to gain complex strain fields, and a 3-D DIC 

measurement system was applied to record the strain variation in deformation region. The necessary 

investigation into the formability of sheet material contributes to its forming process designs of auto 

body components. 

2.  Experimental procedure 

2.1.  Tensile tests  

All specimens used in this investigation were made of rolled sheets of aluminium alloy AA5083-O. The 

tensile tests were conducted at room temperature, and tensile speed 0.015mm/s was used on a servo-

hydraulic material test machine (Shimazu, Japan). The self-developed 2-D DIC measurement system 

was applied during the tensile test. Some speckles were painted on the surface of the aluminium alloy 

sheet, and their displacement were tracked by a CCD and recorded by a computer. The variation of strain 

field with time was calculated by the program [5].  The tensile forces were measured by the testing 

machine. According to the Standard GB/T 228.1-201, dog-bone-shaped sheet specimens with a 

thickness of 1.5 mm were cut and tensioned along 0° (RD), 45° and 90º (TD) to rolling directions of the 

sheet. 

2.2.  Ball punch deformation tests 

The ball punch deformation tests were prepared and conducted according to the standard ASTM E643-

09. Figure 1a shows the schematic of die set-up. The radius of the hemispherical punch was R1 = 9.95 

mm. The diameter of the sheet was D1 = 70 mm. The diameter of the die was D = 23 mm and its corner 

radius was R2 = 0.8 mm. The blank holder was a ring with an inner radius of D3 = 33.1mm. To obtain 

forming paths between the uniaxial stretching and the equal-biaxial stretching, some waisted samples 

were prepared (Figure 1b). Between the aluminium alloy sheet and the die and the blank holder, there 

was no lubricant. Vaseline as a lubricant was painted on the surface of the punch before the punching. 

During the test, the hemispherical punch travelled upwards and drew the sheet into the die cavity, and 

the holder force on the blank sheet was maintained a constant. By this self-developed test machine, the 

punch stopped automatically when the force sensor detected the descending of the load. The deformation 

images of the specimen with speckles were captured synchronously by two CCDs of the DIC system 

[5]. The strain field on the outside surface of the bulged specimen was calculated according to the 

recorded displacements of the speckles. 

2.3.  Validation of speckle pattern and strain accuracy 

The speckle pattern (i.e. the speckle size and density) has an important influence on the measurement 

accuracy of strain using DIC. Typical speckle pattern used in the present tensile and bulging test is 

shown in Figure 2a. To verify the strain accuracy with this type of speckle pattern, the simulated test 

rather than real experiment was performed to exclude the environment influence and different sources 

of experimental errors. Firstly, one typical image in tensile test was selected as the deformed image, and 

then a reference image was generated using Lu’s method [7] by applying the sigmoid displacement 

function 𝑢 = 20/(1 + 𝑒−0.06𝑥) onto each pixel where u was prescribed displacement on x direction in 

image coordinate. Both images were added with zero-mean Gaussian random noise with standard 

deviation of two grey-scales, which was statistically computed based on the CCD cameras. The grey-

scale of each pixel was obtained by cubic B-spline interpolation. The sigmoid function is a step function 

which is suitable for simulating the strain concentration in the necking during sheet metal forming. 

Finally, the displacement and strain fields of the centre region (Figure 2a) of 69 by 562 pixels were 
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computed with our DIC routines, and the second-order shape function and subset size of 21 by 21 pixels 

were adopted. Figure 2a shows the measured εx field, where obvious strain concentration appears near 

the centre of strain field. Figure 2b and 2c show the comparison between the theoretical and measured 

mean u and mean εx field on each vertical line of deformation field, it could been seen that the measured 

displacements and strain fields are in good agreement with the theoretical values. For mean u field in 

Figure 2b, the maximum bias is 1/55 pixels. Figure 2d shows the mean bias and the standard deviation 

(St.d.) of εx by DIC. It reveals that the theoretical maximum strain is 0.3, while the average and the 

maximum standard deviation is only 0.0013 and 0.0031 (Figure 2d point A) respectively, and the 

average mean bias is -2.2e-5, while the maximum values is only 0.0058 (Figure 2d point B), which is 

only 1.9%  of  the peek value. It is accurate enough for depicting strain evolution and generating a FLD.   

   

(a) (b) 

Figure 1.  Shapes and dimensions of (a) dies used for ball punching, (b) samples (thickness: 1.5mm). 

           

(a) (b) 

                

(c) (d) 

Figure 2. Validation of spackle patterm adopted in experiments: (a) Typical speckle pattern and the 

strain field εx measured by DIC, (b) Comparision between the theoretical and measured mean 

displacement u on each vertical line of the u field, (c) Ccomparision between the theoretical strain and 

the mean εx on each vertical line of the strain field, (d) The mean bias and the standard deviation (St.d.) 

of the measured εx.. 
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3.  Results and discussion 

3.1.  Results of uniaxial tensile tests 

The tensile forces were recorded by the test machine. The 2-D DIC system recorded dynamic strain 

fields and deformation process of the specimens. Figure 3 shows the measured strain distributions, which 

were captured by the CCD of 2-D DIC system. It can be seen that the strain on the specimen surface 

increased from both ends to the middle part of the tensile specimen.  

 

        

Figure 3. Dynamic strain fields (in tensile direction) of a tensile specimen. 

 

Generally, the strain measurement of a tensile test depends on an extensometer, which records the 

change of the gauge length. Before a tensile test, the exact position of necking or fracture is hard to 

estimate. Therefore, the gauge length has to be considered large enough to cover the failure region. In 

general, the gauge length is 25mm, 50mm, or 100mm according to the geometry of the tensile specimen. 

The strain is derived from the change of the gauge length, and it is called averaged one. As shown in 

Figure 3, the strain distributed unevenly within the deformation area. To obtain the constitutive constants 

of the tested material, an average strain in the necking region is needed. The accuracy of average strain 

is influenced by the gauge length. The measurement error increases with the increasing gauge length. 

When the 2-D DIC system is applied in the strain measurement, the necking or fracture region can be 

distinguished from the recorded full images. The gauge length used to average strain can be concentrated 

in a region as small as possible. Figure 4a shows the gauge selection for average strain calculation. 

Figure 4b shows the calculated true strain varying with the time. The incipient strains calculated using 

different gauge lengths have little deviation. However, with the development of plastic deformation of 

the tensile specimen, the difference of the average strains resulted from two gauge lengths becomes 

more significant. It is can be explained that the large gauge length decreases the deformation 

concentration degree. By the DIC technology, the rational gauge length can be determined from the 

recorded strain field, which is a distinguished advantage over the traditional extensometer.  

Figure 5 shows three true tensile stress-strain curves in three sampling directions (along 0º, incline 

45º and transverse 90º to the rolling direction). Each of the curves was averaged from data of three repeat 

tensile tests. The elastic properties in different tensile directions of the rolled and annealed sheet of 

aluminium alloy 5083 were almost same. By calculation, the values of r0, r45 and r90 (thickness 

anisotropic index in three sampling directions) were 0.816, 0.560 and 0.683, respectively. In-plane 

anisotropy of this alloy was also not significant, and the flow stress in rolling direction was a little higher 

than that in other two directions. It also showed that the elongations in three direction are slightly 

different.  
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Figure 4. Long and short gauge (a) used to average strain calculation (b). 
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Figure 5. Stress-strain curves calculated from the recorded forces and DIC measured strains. 

3.2.  Results of ball punch deformation tests 

By 3-D DIC program, the full-field strain distributions on the surface of ball punched sheets were 

measured. When the measured force declined larger than 5.0% during the test, the testing system 

perceived that the necking or fracture appeared on the deformed sheet and stopped the test. This method 

was proven to be reliable, for each tested sample was found exactly necked when the punching stopped. 

The dynamic strain fields obtained through DIC system are shown in Figure 6, and the limit strains were 

determined at the necking region through the inflection point of strain rate.  Before the necking occurred, 

the strain concentrated at a ring belt near the dome apex, which was coincided with the description in 

Ref. [7].  

 

 

t = 2.02s            t = 4.02s            t = 6.03s            t = 7.03s           t = 9.03s            t = 10.03s 

Figure 6. Major and minor strain filed measured by DIC, varying with the deformation time of sample 

1# (equibiaxial stretching). 
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Figure 7 shows the final strain fields of six samples, where the necking all occurred. Owing to the 

distinctive shape and size, every test sample had different strain distributions (equal-biaxial, biaxial and 

uniaxial) on the outside surfaces. 

 
Sample No. 1# 2# 3# 

Major strain 

   

Minor strain 

   

Sample No. 4# 5# 6# 

Major strain 

   

Minor strain 

   

Figure 7. Major and minor strain filed when necking or fracture occurred in six samples. 

Because the strain was real-time measured continuously, the limit strain can be determined easily. 

The CCD camera recorded the change of speckles during the forming. The comparison between the 

deformed speckles and the unformed speckles (references) can be used to calculate the distances and the 

strains of the speckles. Some featured points were selected on the surface of each test sample, which 

distributed at necking, safety and fracture areas, respectively. The strain states of these points were 

positioned in the minor strain-major strain coordinate system, and a forming limit curve (FLC) of 

aluminium alloy 5083 was constituted (Figure 8). This FLC of AA5083 was compared with that obtained 

by Bariani et al [9]. There is a good agreement in the FLC of AA5083 between the results of Bariani et 

al [9] and the present tests. FLD0, the most critical points (the minor strain equals to zero in the plane 

strain state) in two tests were all near 0.16 and the slopes in the left and the right sides of FLC were also 

similar. 

In the present tests, the punch was smaller than that recommended by the standard ISO12004-2 or 

ASTM E2218-02 (2008). A bending strain effect on the test metal sheet may occur, which contributes 

to a nonlinear strain path. When the limit strains were determined, strains at the necking region with 

various degrees were selected. Compared to the published FLC results of AA5083, most of the necking 

strains were larger. If the FLC was fitted with these necking strains, it will lift. In the present work, the 

lowest limit strain was selected to fit the FLC considering that the small punch was used.  

 



7

1234567890‘’“”

International Deep Drawing Research Group 37th Annual Conference IOP Publishing

IOP Conf. Series: Materials Science and Engineering 418 (2018) 012054 doi:10.1088/1757-899X/418/1/012054

 

 

 

 

 

 

 

-0.2 -0.1 0.0 0.1 0.2
0.0

0.1

0.2

0.3

0.4

Equal biaxial

 

 

 Necking

 Safety

 Fracture

M
a

jo
r 

S
tr

a
in

Minor Strain

Uniaxial tensile 

 

Figure 8. Forming limit diagram (FLD) generated from the measured strains by 3-D DIC. 

3.3.  Application of FLD  

The deep drawing of the inner panel of a car body made of aluminium alloy 5083-O was finite element 

simulated. A commercial program AutoForm was used to build an FE model and perform the calculation. 

The material data including the FLD obtained from the experiments mentioned above were used. The 

objective of this simulation was validating the necking or fracture prediction of finite element simulation. 

The Hill’s 48 yielding and flow rules were adopted, which was a simplified application for the complex 

constitutive equations needed more material constants. The friction coefficients between the metal sheet 

with the tooling was 0.015, which simulated the conditions of polyvinyl chloride (PVC) film applied in 

the forming experiments. 

Figure 9 shows the simulation results, where the formability of materials was indicated by the color 

contour. The prediction results showed that two inner corners were prone to crack (red region) and inner 

side edge (yellow region) was thinned badly. The predicted defects was verified by the stamping 

experiment results as shown in Figure 10. Through the simulations using different parameters, it was 

found that poor lubrication was the main cause of forming defects. After improving the lubrication 

conditions, the inner panel was formed successfully. 

 

  
Figure 9. FE simulation results of the inner panel of an auto body. (a) FLD, (b) Simulated inner panel. 
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Figure 10. Experiment results of the inner panel of AA5083-O. 

 

4.  Conclusions 

With the application of digital image correlation technology, the measurement accuracy of strain field 

of deformed aluminium alloy 5083-O sheet was improved. The dynamic strain field contributed to 

determining the strain to fracture in the uniaxial tensile tests, and the necking points on the dome regions 

of bulging tests were precisely located. The forming limit diagram of aluminium alloy 5083-O sheet 

was established. Based on these strain data and recorded load data, the damage and fracture of deformed 

sheet will be evaluated in the further research.  

Acknowledgements 

This research work was financially supported by the National Natural Science Foundation of China (No. 

51375256). 

 

References 

[1] Sah S, Bawase M and Saraf M 2014 SAE Technical Paper (No. 2014-28-25) 25-33. 

[2] Hirsch J, 2014 Trans. Nonferrous Met. Soc. China 24 1995−2002  

[3] Khan A S and Baig M 2011 Int. J. Plasticity 27 522-538. 

[4] Abedrabbo N, Pourboghrat F and Carsley J 2006 Int. J. Plasticity 22 342-373. 

[5] Zhao J, Zeng P, Lei L and Ma Y 2012 Opt. Laser Eng. 50 473-490. 

[6] Wang K, Carsley J E, He B, Li J and Zhang L 2014 J. Mater. Process. Tech. 214 1120-1130. 

[7] Lu H and Cary P D 2000 Exp. Mech. 40 393-400. 

[8] Abedrabbo N, Pourboghrat F and Carsley J 2007 Int. J. Plasticity 23 841-875. 

[9] Bariani P F, Bruschi S, Ghiotti A and Michieletto F 2013 CIRP Ann-Mannuf. Tech. 62 251-254. 


