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Abstract. In order to quickly obtain an appropriate (semi-)product shape that prevents   

edge fracture in stretch flanging, the non-uniform stretch flanging theory proposed by 

Nagai was applied to the prediction of strain distribution observed in sheet metal 

forming of a product with a flat top and a concave wall. The strains calculated by the 

finite difference method along the flange edge are comparable to those obtained by 

finite element analysis. Furthermore, flange height h, corner radius R, and shape angle 

θ were selected as significant factors on circumferential strain εc along the flange edge. 

The investigation on the effect of those factors shows that εc increases as R decreases, 

h increases, and as θ increases. A further increase in θ, however, reduces the 

increasing rate of εc. 

1. Introduction  

The application ratio of high-strength steel sheets to automobiles has increased recently in order to 

achieve both weight reduction of the car body and improvement of crash safety [1]. By contrast, the 

lower formability of high-strength steel sheets compared to that of mild steels is a subject of concern 

regarding its further utilization. In particular, cracking of sheared surfaces during stretch flange 

forming, hereafter called “edge cracking,” has been identified as the main aspect requiring 

improvement. 

When automotive parts are designed, it is necessary to prevent edge cracks during press forming. 

Therefore, in order to design a part shape using an appropriate steel type such as DP steel and TRIP 

steel, the stretch-flangeability of the steel sheet must be evaluated. Because edge cracking is a 

phenomenon in which cracks are generated at the edge of the steel sheet, it is effective to calculate the 

strain distribution at the edge. The relationship between part shapes and strain distribution at the edge 

was reported by Nitta et al. [2]. They conducted experiments to investigate the influence of the contour 

shape of parts and flange height on stretch-flangeability and evaluated the strain distribution for each 

condition by finite element analysis (FEA). However, this study is not directly used for actual 

automobile designing. The evaluation techniques require many experiments and FEA, and it takes a lot 

of time to evaluate the stretch flangeability. Therefore, to minimize the escalation in work time, a 

simple and accurate method of evaluating stretch flangeability should be developed. Hiwatashi et al. 

evaluated the relationship between the part shapes and stretch flangeability by theoretical calculations 

[3]. They evaluated the strain at the flange edge using uniform deformation theory. However the 
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influence of the part shapes on the non-uniform strain distribution at the flange edge has not been 

sufficiently studied. In order to evaluate non-uniform deformation by theoretical calculations, it is 

necessary to consider in-plane shear deformation occurring in the flange. Nagai reported on non-

uniform stretch flanging analysis considering in-plane shear deformation [4]. Nagai investigated the 

accuracy of calculation and proposed a technique to prevent edge cracking. However, the quantitative 

influence of part shapes on stretch flangeability has not been studied. 

In this study, we derive a part shape that does not generate edge cracking by adding our contribution 

to previous investigations on the stretch flangeability. In order to reveal the quantitative influence of 

part shapes on the strain distribution at the flange edge, the characteristics and accuracy of the result 

calculated by Nagai’s method were investigated [4]. From the results, a method of deriving the part 

shapes that does not generate edge cracking was developed. 

2. Non-uniform deformation theory in stretch flanging analysis 

The non-uniform stretch flanging analysis proposed by Nagai is outlined as follows [4]. Figure 1 

shows a schematic figure of the shape change before and after deformation. It is assumed that the area 

element PQRS before the deformation becomes PQ’R’S after the deformation. As the assumption of 

flange deformation, the line segment PS on the bottom surface of the part does not deform, the length 

of Q’R’ is the same as the length of PS, and PQ’ is perpendicular to PS. Assuming that PQ’, SR’ 

become PQ, SR before deformation respectively, angle 𝜓 formed by PQ and the normal PS is the 

amount generated by shearing deformation before and after flange deformation. In this paper 𝜓 is 

called the “shear angle.” Further, it is assumed that PQ and SR are straight lines, and the length from 

their intersection O to P is the curvature radius 0. In this paper 1/0 is called the “equivalent 

curvature.” If the radius of curvature of PS is r0 and the center of curvature with the r0 is Or, 1/0 and 

the curvature 1/r0 of PS have the geometric relationship expressed by equation (1). 

 
1

𝜌0
=
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 (1) 

The line segment before deformation corresponding to the deformed line segment A’B’ is defined as 

AB. Assuming that the equivalent curvature radius of AB is , the circumferential strain x of A’ is 

given by equation (2). y is the distance in the flange height direction after deformation. Assuming that 

the distance in the flange height direction before deformation is Y, the relationship between y and Y is 

given by equation (3). Assuming incompressibility, strain y in the flange height direction (y-axis) and 

strain z in the plate thickness direction (z-axis) are expressed by equation (4). 
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Furthermore, if the line segments in the y direction are kept straight before and after the deformation, 

the distribution of the shear angle 𝜓 in the flange height direction is given by equation (5). 

 𝜓 =
𝜌0

𝜌
𝜓0 (5) 

The circumferential stress σx and the shear stress τ are expressed by equations (6) and (7) assuming the 

total strain theory. The stress σy in the flange height direction and the stress σz in the plate thickness 
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direction are 0. The work-hardening characteristic of the steel sheet was expressed by equation (8). σeq 

is the equivalent stress. C is the strength coefficient, ε0 is the initial strain and n
*
 is the work-hardening 

exponent, which are a constant determined by the material. From equation (8), it is possible to 

consider the influence of work hardening characteristics in this analysis. εeq is the equivalent plastic 

strain in the von Mises yield condition by equation (9). 

 𝜎𝑥 = 𝜎𝑒𝑞

𝜀𝑥

𝜀𝑒𝑞
 (6) 

 𝜏 =
𝜎𝑒𝑞

3

𝜓

𝜀𝑒𝑞
 (7) 

 𝜎𝑒𝑞 = 𝐶(𝜀0 + 𝜀𝑒𝑞)𝑛∗
 (8) 

 𝜀𝑒𝑞 = √𝜀𝑥
2 +

𝜓2

3
 (9) 

The bending moment M is expressed by equation (10). The shear force 𝑄 is expressed by equation 

(11). The relationship between the thickness of the flange after deformation t and the thickness of the 

flange before deformation T is expressed by equation (12). 

 𝑀 = ∫ 𝜎𝑥𝑡𝑦 𝑑𝑦
ℎ

0

 (10) 

 𝑄 = ∫ 𝜏𝑡 𝑑𝑦
ℎ

0

 (11) 

 𝑡 = 𝑇exp(𝜀𝑧) ≡ 𝑇exp (−
𝜀𝑥

2
) (12) 

The equilibrium state of the moment regarding point P of the flange area element PQ’R’S in Figure 1 

is expressed by equation (13).  

 
𝑑𝑀

𝑑𝑥0
+ 𝑄 = 0 (13) 

  
Figure 1. Configuration and symbols of the area 

element before and after deformation [4]. 
Figure 2. Shape of stretch-flanging. 
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3. Numerical method and results 

3.1. Numerical method 

In this study, the strain distribution in the circumferential direction at the flange edge was calculated 

using the numerical method in Chapter 2 and the stretch flangeability was evaluated. Table 1 shows 

the mechanical properties of steel sheets and the material parameters in equation (8) measured by the 

uniaxial tensile test. The part shape has a flat top surface and flange surfaces that comprise straight 

lines and circular arcs as shown in Figure 2. Corner radius R, shape angle θ, and flange height h were 

varied as shape variables. Corner radius R is the radius of curvature of the part, and it is a constant 

value inside circular arcs. The strain distribution was calculated by setting the corner radius R to 

60mm, shape angle θ to 60 degrees, and flange height h to 18mm. 

Calculation was performed by the finite difference method. The flange height h and the curvature 

radius 0 are functions in the x-axis direction. The boundary condition, 𝜓0=0, is adopted because of the 

symmetry at the center of the circular arc (x=0) in Figure 2. In addition, 1/0=0, is adopted at the 

longitudinal end in the x-axis direction.  The calculation procedure is shown as follows [4]. 

(1) 1/0 is assumed at the center of the circular arc (x=0). 

(2) As the calculation area, the flange height direction and the circumferential direction are divided 

by an arbitrary number of sections. The flange height direction was divided into 19 parts, and the 

circumferential direction was divided into 20 parts.  

(3) εx at each point divided into Δy is calculated from equation (2), and σx and t are calculated from 

equations (6) and (12). Then, M is calculated from equation (10). From the boundary condition at 

the center of the circular arc (x=0), 𝑄= 0, 𝜓0=0. 

(4) 𝜓0 and M at x=Δx are calculated from equations (1) and (13) as the forward difference.  

 𝜓02 = 𝜓01 + (
1

𝑟0
−

1

𝜌0
) 𝛥x (14) 

 𝑀2 = 𝑀1 − 𝑄𝛥x (15) 

Subscripts ( )1 and ( )2 indicate the variables of the previous position and the current position 

separated by 𝛥x. ( )1 is a known variable. 1/02 and 𝑄2 are calculated from equations (10) and (11) 

using 𝑀2 and 𝜓02  is calculated from equations (14) and (15). Procedures (3) and (4) are repeated 

at each division point in the x direction to calculate 1/0, 𝑄, εx, σx and t in the circumferential 

direction. 

(5)  It is checked whether 1/0 becomes equal to 0 at the edge. If it is not 0, 1/0 in the center is 

corrected and procedures (1) to (4) are calculated again. Then, the calculation is repeated until 

the boundary condition at the edge is satisfied.  

In order to investigate the accuracy of the strain distribution at the edge of the flange calculated from 

this method, FEA was performed by the dynamic explicit method on the model shape shown in Figure 

2. The commercially available code LS-DYNA ver.971 R5.11 is used for FEA. The element type is a 

4-node complete integral element, the number of integration points is 9 in the thickness direction, and 

the initial mesh size is 1.6mm. 

In order to investigate the quantitative relationships between the strain at the edge and the shape 

variables, this calculation was performed under various shape conditions. For the range of the shape 

conditions, corner radius R was from 45 to 90 mm, shape angle θ was from 10 to 150 degrees, and 

flange height h was from 8 to 24 mm. The evaluation indicator was the circumferential strain εc at the 

center of the circular arc. 

Table 1. Mechanical properties and parameters. 

T / mm YS / MPa TS / MPa El / % C / MPa ε
0
 n* 

1.6 411 602 32 969 0.005 0.178 
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3.2. Results 

Figure 3 shows circumferential strain distribution εx at the flange edge calculated by uniform 

deformation theory and non-uniform deformation theory. The analysis result by non-uniform 

deformation theory considering the shear deformation shows that εx gradually decreases from the 

center of the circular arc to the straight end. On the other hand, εx was calculated by uniform 

deformation theory from equation (2). As a result, εx was a constant value inside a circular arc. Figure 

4 shows shear angle 𝜓 distribution at the flange edge calculated by non-uniform deformation theory. 

Shear angle 𝜓 distribution shows the maximum value at the boundary between the circular arc and the 

straight end, hereafter called the “R end.” Figure 5 shows the influence of work hardening exponent n* 

on strain distribution. When n* gradually increased from 0.17 to 0.30, from equation (8), it is possible 

to consider the influence of work hardening characteristics on the strain distribution in this method at 

the center of the circular arc is small. On the contrary, εx at the straight end is large. Figure 6 shows a 

comparison of εx in the analysis by the non-uniform deformation theory and the FEA. For each 

calculation result, εx at the center of the circular arc is almost the same value. Moreover, it is possible 

to qualitatively calculate the reduction of the εx from the center of the circular arc to the straight end. 

We investigated the relationship between the designed variables (R, h, θ) of the parts and 

circumferential strain εc at the center of the circular arc. Figure 7 shows the relationship between εc and 

flange height h, and Figure 8 shows the relationship between εc and corner radius R. Their results were 

calculated assuming that shape angle θ is constant at 60 degrees. These results indicate that εc 

increased as flange height h increased, and εc decreased as corner radius R increased. Similarly, the 

relationship between εc and shape angle θ is shown in Figure 9. The results were calculated assuming 

that the corner radius R is constant at 60 mm. As a result, εc continuously increased as shape angle θ 

increased, and εc tended to be saturated when θ was further increased. It was also observed that the 

boundary condition at the edge could not be satisfied under the conditions of high εc in Figures 7, 8, 

and 9.  

  
Figure 3. Circumferential strain εx and shear angle 𝜓 

calculated by uniform deformation theory. 

Figure 4. Shear angle distribution 𝜓 

calculated by non-uniform deformation theory. 

  
Figure 5. Influence of work hardening exponent n* 

on circumferential strain distribution  

at the flange edge. 

Figure 6. Comparison of analysis  

by non-uniform deformation theory and FEA  

in strain evaluation at the flange edge. 
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Figure 7. Relationship between 

strain of edge at center εc and 

flange-height h. 

(θ = 60 degrees) 

Figure 8. Relationship between 

strain of edge at center εc and 

corner radius R. 

(θ = 60 degrees) 

Figure 9. Relationship between 

strain of edge at center εc and 

shape angle θ. 

(R = 60 mm) 

4. Discussion 

The relationship between circumferential strain εc at the flange edge and designed variables (h, R, θ) is 

discussed as follows. Nagai revealed that it is necessary to lower the flange height h or increase the 

corner radius R in order to decrease εc [4]. Therefore, Figure 10 shows the relationship between εc and 

h/R. εc monotonically increases with h/R. This result shows that εc is uniquely determined irrespective 

of corner radius R. The reason for this is considered to be as follows. The part shape of this study has a 

circular arc and straight ends. The curvature of the flange decreases greatly near the R end. Therefore, 

bending moment M acting on the flange also decreases greatly in the circumferential direction. Figures 

11 and 12 show bending moment M distribution and shear force Q distribution of the flange edge 

calculated by setting corner radius R to 60mm, shape angle θ to 60 degrees, and flange height h to 

18mm. Shearing force 𝑄 acts on the flange to satisfy equation (11), and shear angle 𝜓 occurs on the 

flange as shown in Figure 4. This shear angle 𝜓 is maximum at the R end. Then shear angle 𝜓 

decreases from the R end to the center of the circular arc. As a result, d𝜓/dx becomes very small at the 

center of the circular arc, and 1/ gradually approaches 1/R from equation (1). In such a case, εc is 

almost proportional to h/R from equation (2). 

Figure 13 shows the relationship between shape angle θ and the equivalent curvature 1/0c at the 

center of the circular arc. The equivalent curvature 1/0c also increases as shape angle θ increases. 

Therefore, εc continuously increased as shape angle θ increased. However, even if shape angle θ 

increases beyond a certain angle, the equivalent curvature 1/0c became saturated at a constant value. 

In such a case, a further increase in shape angle θ, reduces the increasing rate of εc. As described above, 

the influence of flange height h and corner radius R on εc is large, and the influence of shape angle θ is 

different depending on the size of the angle. 

Figure 14 shows the part design method using non-uniform deformation theory in stretch-flanging 

analysis. Contour lines of εc are shown in Figure 14. Figure 14(a) shows εc under the condition with 

corner radius R and flange height h as variables. The results shown in Figure 14(a) were calculated 

assuming that the shape angle θ is constant at 60 degrees. Figure 14(b) shows εc under the condition 

with shape angle θ and flange height h as variables. The results shown in Figure 14(b) were calculated 

assuming that corner radius R is constant at 60 mm. In the range where εc is large in Figure 14, the risk 

of edge cracking is considered to be high. In addition to Figure 14, by setting critical strain εcr at which 

the flange edge fractures, it is possible to design a part shape that does not cause edge cracking. For 
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setting critical strain εcr, it is necessary to determine the value according to the type of steel and the 

processing conditions of the edge. Therefore, critical strain εcr was determined from the hole 

expansion ratio which is an index of stretch flangeability [5]. Regarding hole expansion ratios, the 

holes punched in specimens with 11%t clearance were expanded using a conical punch until a crack 

generated on the punched surface percolated across the entire material thickness, according to 

ISO16630 [6]. Hole expansion ratio λ and critical strain εcr are calculated from equations (16) and (17). 

Where d0 is the initial hole diameter and d is the hole diameter after the hole expanding test. 

 𝜆 =
𝑑 − 𝑑0

𝑑0
× 100 (16) 

 𝜀𝑐𝑟 = ln(1 +
𝜆

100
) (17) 

For example, if the hole expansion ratio of the test material is 55%, critical strain εcr is 0.43. In order 

to satisfy εc < 0.43 in Figure 14, flange height h may be designed to be lower than 21 mm at corner 

radius R = 50mm, or flange height h may be designed to be lower than 23 mm at shape angle θ = 90 

degrees. According to this evaluation method, it is possible to design a shape that prevents edge 

cracking. 

  

Figure 10 Strain εc vs. flange-height h/R for 

various corner radii. (θ = 60 degrees) 

Figure 11 Bending moment M distribution 

calculated by non-uniform deformation theory. 

  

Figure 12 Shear force Q distribution calculated 

by non-uniform deformation theory. 
Figure 13 Equivalent curvature 1/0c vs. shape 

angle θ for various h/R. (R = 60 mm) 



8

1234567890‘’“”

International Deep Drawing Research Group 37th Annual Conference IOP Publishing

IOP Conf. Series: Materials Science and Engineering 418 (2018) 012046 doi:10.1088/1757-899X/418/1/012046

 

 

 

 

 

 

 

 
(a) Contour of strain εc according to 

 flange height h and the corner radius R. 

(θ = 60 degrees) 

(b) Contour of strain εc according to 

 flange height h and the shape angle θ. 

(R = 60 mm) 

Figure 14  Part design method using non-uniform deformation theory in stretch-flanging analysis. 

5. Summary 

In this study, the strain distribution at the flange edge in stretch-flanging was evaluated by using non-

uniform deformation theory. The findings obtained from this study are shown below. 

(1) The strains calculated by the finite difference method along the flange edge are comparable to 

those obtained by finite element analysis. 

(2) In the part shape of this study, circumferential strain εc at the flange edge increased as corner 

radius R decreased or flange height h increased. 

(3) The εc increased as shape angle θ increased. A further increase in θ, however, reduced the 

increasing rate of εc. 

(4)  We proposed a parts design method by stretch flanging analysis using non-uniform deformation 

theory. 
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