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Abstract. In production of deep drawn sheet metal parts, it is often challenging to achieve a 

robust process. Especially in the production of kitchen sinks made out of stainless steel, the 

fluctuation of the process and material properties often lead to robustness problems. Therefore, 

numerical simulations are used to detect critical regions. To keep a constant product quality, 

process control is realised based on metamodels, which are computed by means of a series of 

finite element simulations. In order to enhance the forecast capability of the simulation model 

and to increase the reliability of quality features, the yield curve, the yield locus and the forming 

limit curve (FLC) of different suppliers are measured with tensile, bulge and Nakazima 

experiments. Because of the large deformation capability of stainless steels, large drawing depths 

can be achieved. However, the classic Nakazima geometries are not distributed homogenously 

in the forming limit diagram (FLD). To overcome this shortcoming, a shape optimization of the 

Nakazima specimen has been performed. Furthermore the influence of alloying elements on the 

hardening behaviour and on the FLC are analysed. In addition, the measured FLC-T (temperature 

dependent FLC) conducted with heated Nakazima tests is compared with the computed FLC-T 

with the modified maximum force criterion (MMFC). 

1.  Introduction 

The kitchen sinks produced by Franke are made out of austenitic stainless steels (1.4301). The material 

is supplied by three different material suppliers (A, B, C). In this paper, the material behaviour of one 

batch of material of each company is characterized and compared with each other [1]. Because of the 

strain-induced martensite the hardening behaviour is strongly temperature dependent. Furthermore the 

alloying elements influence the martensite formation rate and therefore also the hardening behaviour. In 

order to characterize the hardening, the Hänsel model is computed based on thermal tensile experiments 

[2], [3]. 

In deep drawing simulations, the forming limit curve (FLC) is used as a failure criterion. In order to 

verify the influence of higher tool temperatures on the FLC, Nakazima tests are conducted with heated 

tools. The resulting FLC-T (temperature dependent FLC [3]) is then compared with the computed FLC-

T using the modified maximum force criterion (MMFC) [4], [5]. 

During serial production the increasing tool temperature affects the lubrication and therefore also the 

friction conditions. These effects can be measured with strip drawing tests at various temperature, 

velocity and pressure levels. The fitted friction model is then used in simulation. The effects of 
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increasing temperature during serial production or changing material stacks affect the production and 

thus the product quality. In order to keep a constant part quality, variant simulations are computed. The 

influences of the material, the temperature and the friction on the quality features are then condensed in 

metamodels, which form a basis for a subsequent process control [6], [7]. 

2.  Hardening behaviour 

The hardening behaviour of stainless steel is strongly temperature dependent because of the temperature 

dependent martensite formation rate. The strain-induced martensite is very typical for metastable 

austenitic CrNi materials during cold forming at temperatures below 80°C. By conducting material 

experiments at different temperature levels, the martensite volume and the hardening behaviour can be 

measured. Then, the parameters of the Hänsel model are fitted with the measured tensile experiments in 

rolling direction at 0, 10, 20, 40, 60 and 80°C and a strain rate of 0.002 𝑠−1 [2]. 

The base function of the Hänsel model (see Equation (2)) is fitted with the Hockett-Sherby (HS) 

equation at the reference temperature of 80°C. At this temperature, the material stays austenitic and no 

martensite is formed during deformation. The influence of the temperature on the austenitic flow curve 

is taken into account with a linear function (see Equation (3)). The actual martensite volume is calculated 

by the integration of the martensite formation rate over the strain path [2]. The contribution of martensite 

volume fraction to the flow stress is taken into account by a linear relation given by a parameter ∆𝑘𝑓 in 

Equation (1). 

σ(φ, T, VM) = σHS(φ) ∙ f(T) + ∆kf
γ→α′

∙ VM (1) 

σHS(φ) = BHS − (BHS − AHS) ∙ e−m∙φn
 (2) 

f(T) = [1 − K ∙ (T − Tref)]; Tref = 80°C (3) 

 

Figure 1. Isothermal hardening curves (Hänsel model) for 1.4301 of A, B and C. 

Table 1. Parameters of the Hänsel model. 

 BHS  AHS  m  n  K  ∆kf
γ→α′

  

A 1318 MPa 239.9 MPa 1.80 0.90 0.002288 459.0 MPa 

B 1444 MPa 240.0 MPa 1.70 0.86 0.001977 441.3 MPa 

C 1485 MPa 268.2 MPa 1.70 0.92 0.002037 402.2 MPa 

 

The data of the bulge experiment cannot be used for a better extrapolation behaviour of the base 

model [8], because it is not conducted at 80°C, thus martensite is generated during room temperature 

bulge testing [1]. The martensite content is measured during the tensile experiments. Because the 

permeability of the martensite differs under load (Villari effect), the measured martensite content does 
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not correspond to the real martensite volume. By conducting tensile experiments with cyclic releases to 

zero stress at different temperatures and strain values, the Villari effect can be modelled with the 

approximation function of Krauer [3]. 

The possibilities in AutoForm are limited to implement thermal material behaviour, especially 

parameters of the Hänsel model. Therefore isothermal hardening curves are used in a look-up table in 

AutoForm, as they are shown in Figure 1 [1]. The major disadvantage of this method is the information 

about the actual martensite volume integrated over the strain and temperature path gets lost. In 

AutoForm parameters of the Hänsel model cannot be modified, because they are hard-coded. Thus the 

evaluated martensite volume is only a post variable and does not affect the hardening behaviour of the 

material. 

2.1.  Influence of alloying elements on hardening behaviour 

The properties of stainless steel are affected by different alloying elements, heat treatment and 

impurities. According to the standard, austenitic stainless steel 1.4301 consists of chromium between 17 

– 19.5%, nickel between 8 – 10.5%, manganese less than 2.0% and additional alloying elements. Nickel 

is added to promote an austenitic microstructure and increases ductility, toughness (ability to absorb 

energy) and to reduce the corrosion rate. Furthermore it is also used to form the intermetallic compounds, 

which increase strength [9]. The production of nickel is highly resource-intensive, consequently the 

amount is reduced to a minimum. Manganese is acting as an austenite stabiliser at low temperatures. It 

is used as an austenite former and can also replace some of the nickel. Conversely, molybdenum slightly 

increases mechanical strength and promotes the formation of secondary phases [9]. Of each material 

supplier, two batches of different melts are used to compare the chemical composition and the resulting 

material properties (see Table 2 and Table 3). All values are measured by the material supplier 

themselves according to the standard DIN EN ISO 6892-1. 

Table 2. Amount of alloying elements of different material suppliers of 1.4301. 

[%] Batch C Mn Si P S Cr Ni Mo N 

A 
A1 0.037 1.22 0.330 0.030 0.001 18.02 9.03 0.280 0.026 

A2 0.040 1.26 0.320 0.030 0.001 18.11 8.53 0.180 0.053 

B 
B1 0.040 1.21 0.58 0.032 0.001 18.40 8.00 - 0.053 

B2 0.034 1.27 0.50 0.033 0.001 18.10 8.10 - 0.041 

C 
C1 0.050 1.02 0.397 0.029 0.004 18.11 8.05 - 0.044 

C2 0.060 1.03 0.423 0.032 0.004 18.04 8.04 - 0.030 

Table 3. Material characteristics of the different batches (1.4301). 

 Batch σ0.2 [MPa]  σTS [MPa]  A80 [%]  

A A1 230 614 63.0 

A2 269 615 60.0 

B B1 272 637 60.6 

B2 285 642 62 

C C1 270 666 53.0 

C2 287 647 55.2 

 

The influence of the alloying elements on the corresponding material specifications are depicted in 

Figure 2 as pairs of values. Nickel reduces the yield stress and along with manganese it also decreases 

the tensile strength. Whereas manganese increases ductility and thus elongation at break A80. The 

material from supplier C contains the minimum amount of nickel and less manganese, thus austenite is 

less stabilised and more martensite is formed during deformation. This leads to a reduced ductility. 
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At 80°C no martensite is formed, hence the yield curves of the three materials are purely austenitic 

(Figure 3 left, from the Hänsel model). The material from A clearly shows a smaller hardening compared 

to the two other suppliers, probably caused by different heat treatment. The hardening curve of A at 

50°C corresponds to the ones of C and B at 80°C. The same effect can be observed between A at 30°C 

and C at 50°C. The main reason for this is the significantly lower martensite formation during 

deformation, which is depicted in Figure 3 as martensite volume integrated over the strain at constant 

temperatures. Hence, the stabilising effect of martensite is decreased for A. 

 

Figure 2. Dependency of material properties of alloying elements. 

 

Figure 3. Hardening curves and predicted martensite volume for isothermal deformation (Hänsel 

model). 

The shown martensite volumes are significantly higher than other values in the literature [2], [3]. The 

measurement system Fischerscope, which is calibrated with ferrite calibration samples, measures an 

equivalent amount of ferrite. Because of the difference in permeability between martensite and ferrite, 

the measured values have to be adjusted by a factor of 1.7 to get the correct amount of martensite [10]. 

Probably in [2] and [3] this effect might not be taken into account. Other deviations can result from the 

material supplier, the material batch and the temperature increase due to higher strain rate. 
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During kitchen sink production, the tool temperatures can easily increase up to 50°C, which can 

actually lead to an error-prone production due to the material behaviour (of course also because of 

changing friction conditions). Especially when changing the batch of material or worse the material 

supplier, the process needs to be adjusted in order to obtain the same part quality. 

3.  Yield locus 

To obtain the yield locus, tensile experiments in 0°, 45° and 90° to rolling direction were conducted at 

room temperature. In each direction the r-values and yield stress are measured. Furthermore bulge tests 

are used to capture the biaxial stress state, which is evaluated at 4% of logarithmic strain in order to 

reduce the uncertainties at the beginning of the bulge test [8]. The biaxial values at 4% equivalent strain 

are then converted to equivalent strains of 0% plastic deformation based on the uniaxial values at 4% 

and the rule of three. For larger strains the temperature increase in the bulge test strongly differs from 

the tensile experiment, which leads to different martensite contents and thus to a non-proportional 

evolution of the uniaxial to the biaxial stress. In order to make a comparison at higher strains, both 

specimen should contain the same amount of martensite at the identical equivalent strain. The M-value 

of the yield locus is assumed to be 8 because of the face-centered cubic crystal structure, which leads to 

better results compared to 6 [3]. The biaxial anisotropy is evaluated in the biaxial Nakazima experiment 

(B200) and bulge test, which is practically 1. In comparison to the stack compression test, Nakazima 

and bulge test always lead to a biaxial anisotropy of close to 1 because of the strain constraints. The 

measured and assumed values are shown in Table 4, which are used to calculate the BBC yield locus 

[11]. 

Table 4. Measured values for yield loci at room temperature. 

 𝑟0 𝑟45 𝑟90 𝑟𝑏 𝜎0 𝜎45 𝜎90 𝜎𝑏 𝑀 

A 0.773 1.180 0.876 1 269.9 253.5 258.6 271.5 8 

B 0.754 1.261 0.852 1 263.8 249.3 251.1 246.6 8 

C 0.861 1.333 0.807 1 297.6 279.2 282.4 296.3 8 

4.  Forming limit curve 

4.1.  Measuring FLC with Nakazima tests 

The FLCs for the materials A and C in Figure 4 are measured with the standardised Nakazima 

experiments and evaluated with the strain-rate dependent method [11], whereby the supposed uniaxial 

experiment B20 has been removed, because in Nakazima test the boundary condition differs from the 

tensile experiment. This leads to significantly different necking behaviour [4]. The Nakazima samples 

B50, B80, B90, B100 and B120 are nearly on one line with an angle of 45°. This corresponds to the Hill 

localised instability theory [13]. 

 

Figure 4. Measured FLCs with Nakazima tests (left: all materials at room temperature, right: FLC-T). 
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For the material C the FLC-T is measured at room temperature, 40°C and 80°C to analyse the effect 

of higher temperature on the failure criterion. During serial production the tool temperature is increasing. 

Hence, Nakazima tests are conducted with heated tools without pre-heating of the sample (lies at least 

30 seconds on binder). Between plane strain and uniaxial tensile test the FLCs are nearly identical. Thus, 

in this region the FLC seems not to be affected by increasing tool temperatures. On the contrary, 

localisation occurs later for higher tool temperatures (80°C) for biaxial stress, similar to material A, 

which forms less martensite. One possible explanation for this effect is that ductility is reduced when 

large amounts of martensite are formed. By taking triaxiality into account, martensite formation is 

beneficial in a biaxial stress state [14]. This leads to lower localisation strains for biaxial stress state at 

lower temperature. Contrarily the decreasing mean flow stress at elevated temperature increases the 

elongation at fracture [15], [16]. 

The Nakazima experiments for B have been reduced to the specimens B50, B100, B120 and B200 

because of the linear behaviour between plane strain and uniaxial stress state. In order to verify the 

straight line between B50 and B120, a novel geometry has been optimised to reach a point between B50 

and B80 based on the approach of [17] in AutoForm Sigma and tested. The geometry and the strain path 

of the experiment are depicted in Figure 5. Furthermore the reproducibility of the experimental results, 

especially of the localisation on top, is improved compared to the other Nakazima samples. The resulting 

point (mean value of 3 samples) in the FLD confirms the linear behaviour for negative minor strains 

(see Figure 4). The experiments have been conducted with very small and sharp drawbeads. This leads 

to a smaller biaxial pre-stretching compared to the Nakazima experiments conducted with standard 

drawbeads. 

 

Figure 5. Nakazima experiment with modified sample geometry. 

The Nakazima experiment B200 at room temperature (without pre-heating the tools) of material C 

is measured with an infrared camera during deformation. The temperature increases from 25°C up to 

45°C. For 12 stages distributed over the testing time, temperature and strain values are measured on top 

of the sample. The points are plotted in Figure 6. Based on these values, the martensite volume is 

integrated over the strain and increasing temperature. The resulting martensite content is very similar to 

the isothermal martensite formation at 25°C during the first 35 seconds of the experiment. With 

increasing temperature, less martensite is formed, thus the deviation to the isothermal martensite (blue 

line) increases. The last point of the integrated martensite volume from the Hänsel model (red line) is 

then compared with the measured martensite after the experiment (red asterisk). The calculated 

martensite fraction shows a very good accordance to the measurement. Therefore the model of 

martensite formation rate in the Hänsel model has a sufficient accuracy, whereby additional strain paths 

(e.g. B50 and B120) should be analysed using the same method. 

The higher temperature on the outer surface of the specimen, which can be seen in Figure 6 left after 

35 seconds as a green ring, is caused by the plastic work. Compared to the centre of the specimen, the 

contact with the punch is missing. Thus, heat transfer is limited and the temperature increases where the 

tool contact is missing. At the end of the experiment, the strain rate increases significantly. Thereby the 
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generated heat due to deformation increases the temperature of the specimen because of the limited heat 

dissipation. 

 

Figure 6. Nakazima experiment B200: Temperature increase and martensite integration. 

During the Nakazima test, the temperature increases (see Figure 6), which influences the martensite 

formation rate. During the first part of the experiment, martensite is formed. Due to the plastic work the 

temperature increases and less martensite is formed towards the end of the experiment compared to a 

constant temperature. This leads to a hardened material with martensite but with less formability 

compared to pure austenitic material. Thus, the material breaks at lower strains. This effect is only 

observed in biaxial direction. One reason is the significantly higher equivalent strain in the biaxial 

direction compared to all other Nakazima samples. 

4.2.  Evaluation with MMFC 

The modified maximum force criterion is evaluated based on the isothermal flow curves of the Hänsel 

model at 30°C and the yield loci at room temperature, whereby the adapted yield loci are all fitted with 

the BBC model. For high M-values the MMFC method runs into numerical instabilities, if the yield 

locus does not exhibit a sufficient curvature in plane strain direction. Therefore a substitute 𝑀𝑐𝑟𝑎𝑐𝑘 value 

of 2 is used instead. All computed FLCs with MMFC contain a biaxial pre-strain of 5%, because of the 

biaxial pre-strain in the experiments through the imprint of the drawbead when closing the die with the 

binder and because of the initial deformation at the beginning of drawing through the punch in the centre 

of the specimen. 

The MMFC evaluated for material A (Figure 7 left) at 30°C leads to acceptable results for a quick 

estimation of the FLC. Contrarily the MMFC method used on material C at 30°C is much higher. Also 

the evaluation at higher temperatures predicts a wrong behaviour. Possible reasons for this effect are 

mentioned in section 4.1 regarding martensite formation, but also the use of a different yield locus 

exponent 𝑀𝑐𝑟𝑎𝑐𝑘 does affect the results. 

 

Figure 7. Evaluation of MMFC compared to Nakazima experiments (left: A, right: C). 

18s, 0.155 35s, 0.328 43s, 0.449

51s, 0.630 55.7s, 0.850 55.74s, split
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5.  Friction Model 

In order to measure the temperature, velocity and pressure dependency, strip drawing tests are conducted 

[3]. The commonly used friction models from AutoForm and Grüebler are then fitted with the 

experimental data [1], [11], [18]. The effect of friction models on the simulation result is compared with 

the standard Coulomb friction model. For the purpose of comparable results, following procedure is 

carried out (see [1]): 

1. Digitise representative part from serial production (e.g. with GOM ATOS [1]) 

2. Use all known properties of production in simulation 

3. Calibrate draw-in in simulation with digitised part (minimisation of draw-in difference) by 

means of a correction factor (for each friction model) 

4. Validate the simulated material thickness with the digitised material thickness from step 1 

(for each friction model) 

The calibration of the friction model is performed to compensate the software specific contact 

formulation. The Coulomb friction coefficients in e.g. LS-Dyna are much smaller compared to 

AutoForm to obtain the same simulation results. Furthermore all other effects, which are not taken into 

account, such as the unknown tool stiffness, are also partially compensated through the calibration. 

Figure 8 depicts on the left the thickness distribution of the digitised part, which was measured with the 

GOM ATOS system. On the right side the result variable thickness of the calibrated AutoForm 

simulation with a Coulomb friction coefficient of 0.07 is shown. 

 

Figure 8. Thickness distribution of digitised part (left) and AutoForm simulation (right) 

The difference of the thickness distribution between the simulations with different friction models is 

very small (less than 0.01 mm) and are not generating any advantage compared to the calibrated 

Coulomb friction model. The AutoForm model only takes the pressure and velocity dependency into 

account. The reference velocity in the friction model by AutoForm is based on the smallest, measured 

velocity of 20 mm/s as recommended by [3]. Smaller velocities do not influence the friction. Thus, 

friction in simulations with velocities below 20 mm/s (which is very typical for kitchen sink production 

with a ram velocity between 10 – 30 mm/s) is only pressure dependent. Therefore the friction model in 

AutoForm is not generating any benefit. The friction model by [18] only takes influences from changes 

in temperature and velocity into account. The corresponding simulation result only shows minor 

differences in regions with large deformations, where temperature increases due to higher deformation 

energy. Overall, for simulation of kitchen sinks with ram velocities below 30 mm/s a standard Coulomb 

friction model is sufficient. It is more important to calibrate the friction coefficient by means of aligning 

the draw-in from simulation with the measured draw-in of a part from production. 

6.  Conclusion and Outlook 

The amount of alloying elements in stainless steels (1.4301) varies considerably between the different 

suppliers. This leads to significantly disparate material behaviour, especially in strain-induced 

martensite formation. Higher amounts of nickel and manganese increase the stabilisation of austenite, 
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thus less martensite is formed and the ductility is increased. A higher ductility does not automatically 

lead to an increased robustness of the kitchen sink production, because the drawing process is stabilised 

through the local formation of martensite. 

The FLC computed with the MMFC provides a good approximation at room temperature for 

materials with low martensite formation. For materials with higher martensite formation the deformation 

energy leads to a temperature increase, and consequently to a reduced martensite content compared to 

the isothermal flow curve. Consequently the standard MMFC method predicts larger deformation to 

failure. This effect could be taken into account by considering an adiabatic temperature increase in the 

MMFC method [3]. 
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