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Abstract. The forming limit curve (FLC) has been used to represent the stretchability of sheet 

metal under various forming modes. However, the formability window in stamping depends 

not only on the material’s forming limit, but also on its strain distribution ability. In the present 

work, a total forming capacity (TFC) index is introduced to describe the global formability of 

sheet metals, which accounts for the contributions of both forming limit and strain distribution 

ability in the material during forming. Essentially, this index is constructed by integrating the 

instantaneous n-value from zero to the effective strain limit of the material. The usefulness of 

this new index is demonstrated through a comparison of the overall global formability between 

a cold-rolled (CR) 590DP steel and a CR980GEN3 steel via a dome test coupled with digital 

image correlation (DIC). Contradicting of its lower forming limit, the 980GEN3 can be formed 

to a higher limiting dome height (LDH) than the 590DP under a near plane strain condition. 

This superior overall global formability of 980GEN3 is attributed to its capability to dissipate 

strain uniformly during forming, resulting in lower strain gradient and delayed strain 

concentration. While revealing the limitation of using the FLC alone, findings in this study 

evince the strength and effectiveness of this new index in assessing the overall global 

formability of sheet metals. The higher index is successfully correlated to the higher LDH of 

the 980GEN3. Further, the TFC concept is applied to evaluate the global formability of a 

multitude of high strength steels at different thicknesses. An explicit relationship is established 

between the calculated index and experimental LDH results. The development and application 

of the TFC indices promise a straightforward way to assess the overall global formability of a 

material. It also serves as a more precise yet simple tool for material comparisons and 

selections. 

1.  Introduction 

Sheet metals constitute the most important family of materials employed in the automotive industry [1, 

2]. To successfully form a 2-dimentional (2D) sheet metal to a 3-dimentioanal (3D) automotive part 

(i.e., B-pillar, door inner, crossmember, roof rail, etc.), the understanding of its formability is critical 

[2, 3]. The past decades have witnessed soaring development of advanced high strength steels (AHSS) 

and other new metallic/non-metallic sheet materials. The growing applications of these new materials 

in recent and future body-in-white (BIW) designs have placed new emphasis to utilize the maximum 

forming capacity of these materials during stamping or other forming processes [1].  

Conventionally, the global formability of sheet metals has been evaluated using forming limit 

curves (FLCs) to describe the limiting strains at the onset of localized necking (through thickness 

thinning) in a sheet material under different strain conditions [4-8]. Other mechanical property 
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parameters such as total elongation (TE) and uniform elongation (UE) are also frequently adopted as 

simple comparators to distinguish the formability of materials [1, 8]. Meanwhile, the importance of 

enabling uniform strain distribution in sheet metal forming has been recognized [9-12]. In this regard, 

the work hardening exponent, commonly known as the n-value, was often referred to as an intrinsic 

parameter to measure the strain distribution competence of the material. Previous analyses on the 

instantaneous n-value as a function of strain were found helpful to evaluate the formability of sheet 

materials [9, 10]. 

It is generally acknowledged that the formability window of a sheet material in stamping depends 

not only on the material’s forming limit but also on its strain distribution ability. A recent report from 

Zhang et al., which was conducted independently from the present work, accentuated the necessity to 

consider both aspects of the global formability [12]. They have evaluated the formability of the QP980 

and three DP980 steels and found inconsistent results in the formability comparisons when using 

different parameters. Two indices were proposed in their work to respectively describe the global 

formability (average strain, εA) and uniform deformation capability (the extent of non-uniform 

deformation, H). The determination of these two indices requires mathematical manipulations of 

temporal and spatial strain data based on digital image correlation (DIC) analysis. Despite recent 

advances, there remains the absence of a single parameter to describe the overall forming capacity of a 

sheet material. In this work, a novel index, named total forming capacity (TFC) index, is proposed to 

account for both forming limits and strain distribution ability of the material for formability 

evaluations and material selections. The proposed index can be conveniently determined using the 

stress-strain curve and the FLC, which are usually readily available from material development and/or 

qualification work. The usefulness of the new index is first demonstrated through a comparison on the 

global formability between a cold-rolled (CR) 590 dual phase (DP) steel and a CR 980 third 

generation (GEN3) steel. Further, its effectiveness is validated with a multitude of high strength steel 

grades of different thicknesses. 

2.  Design of the TFC Index 

2.1.  Definition 

The TFC index is proposed as described in Equation (1): 

                      
      

 
    (1) 

where εlimit is the limiting strain at failure that is defined to be the effective strain (εeff) at the forming 

limit from the path independent FLC [13]; ninst(ε) is the instantaneous n-value as a function of true 

plastic strain to reflect the material’s strain distribution capability. Equation (1) can also be applied to 

shear conditions by using the equivalent failure strain in shear as εlimit. 

As schematically demonstrated in Figure 1, this TFC index is constructed by integrating the 

instantaneous n-value from zero to the effective limit strain of the material. In other words, the value 

of the TFC index for the material equals to the area underneath the instantaneous n-value curve up to 

the effective forming limit strain under a specified strain condition. A scale factor of 100 is 

incorporated in Equation (1) to eliminate excessive zeros after the decimal point for the clarity of data 

presentation. Essentially, a TFC describes the material’s overall capability to dissipate strain within 

itself before reaching strain limits at localized necking. The physical meaning of a TFC index is 

analogous to a strain energy threshold that can be reached during deformation prior to failure.  

2.2.  Assumptions 

The following assumptions have been made to simplify the calculation of the TFC in this study, in 

order to facilitate the investigation on the initial feasibility of using this new index for formability 

characterizations: 

1) The materials are assumed to obey the von Mises yield criterion. The effective strain is 

calculated using Equation (2).  
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     (2) 

This assumption is considered suitable for most of the materials studied in our current work, 

which are high strength steels with average r values of approximately 1. An anisotropy yield 

criterion should be used for those materials with strong anisotropy behaviors.  

2) Based on the n-value definition, the instantaneous n-value can be calculated using the following 

equation: 

          
       

       
      (3) 

3) The effective true stress-strain curve of the material is identical under different strain paths and 

the true stress-strain curve obtained from a tension test is to be applied. In other words, the 

working hardening behavior (n-value) derived from the effective stress and strain data is the 

same for all strain paths including nonlinear strain paths (NLSP). 

4) Before reaching UE, ninst(ε) can be calculated using Equation (3) based on the tension test data. 

However, extrapolation of ninst(ε) beyond UE is necessary, since the n-value calculation is 

invalid using tensile data beyond UE. It is supposed that the working hardening behavior of the 

material after UE maintains the same as that at UE and the n-value beyond UE remains as a 

constant that equals to the terminal n-value (nterm). For those materials demonstrating different 

work hardening behaviors beyond UE, other assumptions may be used to account for the true 

behavior of the material. 

5) A linear strain path is assumed for the FLC (limit strains) and in the subsequent TFC 

calculation. 

Major assumptions stated above are visualized in Figure 2. It is emphasized that the above 

assumptions are not intrinsic to a TFC index. Complexity in the TFC calculation can be built up by 

removing one or more assumptions to improve the accuracy of the index calculation. This initial 

proposal is to check the effectiveness of the index in measuring the total forming capacity. 

 

  

Figure 1. Schematic demonstration of the 

definition of a TFC index. 

Figure 2. Assumptions applied to the 

TFC calculations in this work. 

3.  Materials and Experimental Methods 

As a proof-of-concept, a series of experiments were conducted using various high strength steels with 

ultimate tensile strengths (UTS) ranging from 440 MPa to 1180 MPa, as listed in Table 1.  

Tension tests were conducted in the transverse direction for all test materials following ASTM E08 

standard [14]. Typical tensile properties of the materials are presented in Table 1. The engineering 

stress-strain curve from the tension test was converted to true stress-strain up to UE. Subsequently, the 

instantaneous n-value curve as a function of true plastic strain can be generated using Equation (3). 

The Nakazima dome test following ASTM E2218 standard [15] was used to evaluate the overall 

global formability of the materials. Test specimens were machined in the transverse direction to a 

designed geometry to achieve a near plane strain condition. Example specimens before and after test 
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are shown in Figure 3a. A 3D DIC system was utilized to record the forming process at an acquisition 

rate of 15 frames per second. DIC images were subjected to post-processing at a virtual gauge length 

of 2.75 mm to obtain spatial and temporal strain data (e.g., strain evolution and distribution) on the top 

surface of the specimen (Figure 3b). Detailed descriptions of the test configuration and procedure can 

be found in our previous publications [16, 17]. True major (ε1) and true minor (ε2) strains at the 

forming limit of the material were determined using the algorithm laid out in the ISO 12004-2 

standard [18]. The thickness strain limit (ε3) was calculated by assuming volume constancy [ε3 = - (ε1 

+ ε2)]. The dome height at the time point when the thickness strain limit was reached was considered 

the limiting dome height (LDH) of the material. 

 

Table 1. Test materials and their typical mechanical properties in transverse direction.  

Grade Material t (mm) 
YS 

(MPa) 

UTS 

(MPa) 
UE (%) TE (%) nterm 

440 CR440W 1.4 335 466 17.7 31.2 0.163 

590 CR590DP 1.4 378 643 14.0 22.9 0.131 

780 EG780TRIP 1.4 524 838 19.8 25.6 0.181 

780 GA780TRIP 1.2 488 814 13.9 18.6 0.130 

780 GI780DP 1.2 542 876 10.8 15.7 0.102 

980 CR980GEN3 2.3 597 999 17.1 23.1 0.158 

980 CR980GEN3 1.8 598 997 16.4 21.6 0.152 

980 CR980GEN3 1.4 640 1005 16.4 21.7 0.152 

980 CR980GEN3 0.8 633 1027 15.4 21.3 0.143 

980 CR980TBF 2.3 950 1091 7.5 12.5 0.072 

980 CR980TBF 1.4 868 1010 7.0 12.0 0.067 

980 CR980TBF 1 880 1061 8.4 12.4 0.080 

1180 CR1180SHF 1.6 930 1201 9.0 13.2 0.080 

1180 CR1180SHF 1.2 933 1217 8.3 12.9 0.080 

1180 CR1180SHF 1 938 1205 8.3 12.6 0.086 

t: thickness; YS: yield strength; UTS: ultimate tensile strength; UE: uniform elongation; TE: total 

elongation; nterm: terminal n-value; CR: cold-rolled (bare); EG: electrogalvanized; GA: hot-dip 

galvannealed; GI: hot-dip galvanized 

 

 

Figure 3. Formability tests coupled with DIC: a) example test specimens of the CR590DP 

before (top) and after (bottom) Nakazima dome test; b) DIC data showing strain contours at the 

last frame prior to fracture, strain histories and forming limits of the CR980GEN3 and the 

CR590DP. 
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4.  Results and Discussion 

4.1.  Case study: CR590DP and CR980GEN3 

To excise the proposed TFC index, a case study was conducted to assess and compare the formability 

of the CR590DP and the CR980GEN3 steels of 1.4 mm thickness.  

As discussed earlier, many mechanical properties have been cited to characterize the formability of 

a material, amongst which the FLC, the TE, the UE and the n-value are most frequently used. The 

formability comparisons between the CR590DP and the CR980GEN3 using these properties yield 

contradicting results. Based on the FLCs in Figure 4 and results in Table 1, the CR590DP is found to 

show higher FLC and TE than the CR980GEN, which would usually be interpreted as better 

formability for the CR590DP. However, the UE and nterm for the CR980GEN3 are higher than the 

CR590DP based on the stress-strain curves in Figure 5 and mechanical properties listed in Table 1, 

which indicates a superior strain distribution capability of the CR980GEN3. 

 

  

Figure 4. FLCs of the CR590DP and 

the CR980GEN3 based on dome tests.  

Figure 5. Engineering stress-strain curves 

of the CR590DP and the CR980GEN3. 

 

 

Figure 6. Comparisons on the formability of the CR590DP and the CR980GEN3: a) samples 

after test; b) LDH and TFC index comparison; c) strain distribution contours at dome height of 

23 mm; and d) strain distribution profiles along the middle lines indicated in c), arrows illustrate 

the sizes of the formability windows. 
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LDH tests were adopted for a direct comparison in the global formability between the two 

materials, and the results are illustrated in Figures 6a and b. Opposing to its lower forming limit, the 

CR980GEN3 can be formed to a higher LDH under the near plane strain condition than the CR590DP.  

The superior global formability of the CR980GEN3 to the CR590DP is largely attributed to its 

capability to dissipate strain uniformly during forming. This is proved by the DIC analysis shown in 

Figures 6c and d. At the same dome height of 23 mm, the strain gradient in the CR980GEN3 is much 

smaller than in the CR980GEN3, leading to a larger formability window despite its lower thinning 

limit.  

In this case study, FLC and TE failed to predict the overall global formability advantage of the 

CR980GEN3. UE and n-value are seemingly more appropriate criteria, however, may result in 

overestimation of the formability differences between the two materials, since the strain limits are not 

accounted for. The TFC index was introduced to solve this conundrum. Calculation of the TFC was 

performed using the method sketched in Figure 2 and are plotted in Figure 6b. The higher TFC index 

is successfully correlated to the higher LDH of the CR980GEN3, preliminarily showing the 

effectiveness of the TFC index to characterize and compare global formability of materials. The ability 

of the TFC index to reflect the extent of formability difference between the two materials appears 

satisfactory. The effectiveness of the TFC index will be further discussed in the following sections. 

4.2.  Additional applications of TFC index 

The general applicability and scalability of the proposed TFC index were explored with 15 high 

strength steels of a spectrum of grades (UTS: 440 – 1180 MPa) and thicknesses (0.8 – 2.3 mm) as 

tabulated in Table 1. The results are summarized in Figure 7. A different strain path was also 

examined for the 1.4 mm thick CR980GEN3 denoted with the asterisk in Figure 7.  

 

 

Figure 7. LDH as a function of TFC of high strength steels at different strength levels, different 

thicknesses and under different strain conditions. A power law relationship is established 

between LDH and TFC. 

 

An explicit relationship is established between the calculated TFC index and the experimental LDH 

at the near plane strain conditions, which is evinced in Figure 7. Statistically, this relationship is best 

depicted by a power law with an R
2
 value of 0.989: 

                     (4) 
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or                          
       -    

    
         (5)  

The power law relationship between LDH results and TFC indices is fundamentally meaningful, as the 

LDH is 0 when the TFC equals to 0. On an additional note, a linear regression in the form of 

                    can also provide acceptable fitting results (R
2
 = 0.9753). However, it is 

rejected for not being physically sound to correlate 0 forming capacity with a large LDH. 

Some deviations from the power law can be identified in Figure 7, which could be inherent to the 

assumptions made in section 2.2. Moreover, the accuracy of LDH and the subsequent relationship 

determined above is dependent on the accuracy in the forming limit determination. In this work, the 

more conservative DIC data processing method following ISO12004-02 standard was utilized [16], 

which may systematically offset the calculated TFC indices to lower values. The model will be further 

improved to optimize the coefficients in Equation (4) in future work.   

4.3.  TFC Curve, TFC0, and TFCUT 

The definition in Equation (1) implied that the TFC index is dependent on material thickness and 

strain path. The strain path and thickness dependent features of the TFC are built in due to the use of 

the forming limit (FLC) in the calculation. Therefore, the TFC is not a fixed number, but rather a 

curve for a specific sheet material. For each data point along the FLC, an effective strain limit can be 

calculated with Equation (2) and volume constancy assumption, converting the typical FLC in an ε1-ε2 

diagram to an effective FLC in an εeff-ε2 diagram. Such conversion is shown in Figure 8a with 

CR980GEN3 as an example. Data points in the effective FLC (Figure 8a) coupled with the 

extrapolated instantaneous n-value curve can be applied to calculate corresponding TFC indices using 

Equation (1), which is schematically demonstrated in Figure 8b for the CR980GEN3. Subsequently, a 

TFC curve can be constructed and plotted in a TFC-ε2 diagram. The TFC curves of the CR590DP and 

the CR980GEN3 are illustrated in Figure 8c, in comparison with their FLCs. Similar to but more 

precise than the FLCs, the TFC curves can be applied to give a comprehensive evaluation and 

comparison of a material’s total capability in global forming. The example in Figure 8c displays even 

more global forming benefits of the CR980GEN3 than the CR590DP under uniaxial tension and 

biaxial stretch conditions, which are not visible in the FLC comparisons. 

 

 

Figure 8. Calculation of a TFC curve: a) converting typical FLC (blue dashed line) to effective 

FLC (pink dashed line) for a 1.4 mm thick CR980GEN3; b) instantaneous n-value curve and 

schematic TFC construction for a 1.4 mm thick CR980GEN3; c) comparisons on the FLCs 

(dashed lines) and TFC curves (solid lines) of the CR590DP and the CR980GEN3. 
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To facilitate material comparison, the use of the TFC index under plane strain condition (TFC0) is 

recommended, which is corresponding to FLC0, as shown in Figure 8c. One example of the 

application of TFC0 is shown in Figure 9 as a TFC0-thickness diagram. The properties of three 

materials are plotted for demonstration purposes. This diagram can be used for an accurate and quick 

comparison of materials’ global formability. At the same thickness (e.g., 2 mm), the higher TFC0 

values of the EG780TRIP and the CR980GEN3 than that of the CR590DP are indicative of their 

superior global formability. Additionally, the diagram is useful in the down-gauging feasibility 

evaluation. In this regard, the use of a 1.75 mm CR980GEN3 or a 1.0 mm EG780TRIP to replace the 

2.0 mm thick CR590DP could be practical without any changes to the part design from the global 

formability point of view. If further down-gauging is desired, design modifications to the part/tool 

may be required for the same global formability window. It is important to reiterate that the evaluation 

is only valid concerning global forming. Local formability of the materials should be assessed 

separately.  

 

 

Figure 9. TFC0-thickness diagram for global formability comparisons and down-gauging 

feasibility evaluation 

 

Alternative to the TFC0, the TFC under uniaxial tension condition (TFCUT) can be another useful 

parameter for direct material comparisons. The benefit of using TFCUT is that it can be determined 

solely based on tension tests. TFCUT can also be used for material ranking, selection, and material 

replacement feasibility evaluation purposes. The determination and applications of TFCUT are not 

elaborated in this paper, since it is essentially similar to the TFC0. 

4.4.  Additional discussion and future considerations 

A number of assumptions were incorporated in the TFC calculation to simplify the discussion in the 

present study, as listed in Section 2.2. For future development to improve the accuracy of the index 

and to expand its applicability to other sheet materials, additional considerations and reviews to these 

assumptions are necessary. 

First, the precision of the instantaneous n-value curve governs the accuracy of the TFC index. 

Current assumption of a constant n-value beyond UE may not hold true for materials with dynamic n-

value at higher true strains, such as TRIP steels or aluminum alloys. Optimization of n-value 

extrapolation beyond UE using different work hardening models would be helpful to certain extent. 
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Ideally, experimental tests (e.g., bulge test, shear test, etc.) should be performed to generate the true 

stress-strain curve and instantaneous n-value curve to high strains.  

Second, the NLSP dependence of the TFC curve is worth emphasis. The TFC computation can be 

affected by the presence of NLSP in the test, which is inherent from the strain path dependence of the 

FLC [19] used in the calculation. With the attempt to rule out this process-dependent factor in material 

property comparison, the strain paths of the dome test under near plane strain deformation modes were 

approximated to be linear in this study. For the relative material performance evaluation purpose, the 

TFC calculated from the FLC with the linear strain path should be sufficient. To ensure the validity of 

the TFC definition in Equation (1) for the NLSP, the use of the path independent FLC [13] is required. 

In this case, the upper limit for the integration in Equation (1) becomes the effective limit strain 

corresponding to the incremental strain ratio [13]. As a result, the x-axis in Figure 8c can be replaced 

with the incremental strain ratio to generate a TFC vs. the incremental strain ratio diagram, so that the 

TFC would be independent of the nonlinear strain path. It is reiterated that the working hardening 

behavior is assumed to be independent of the strain path including NLSP. 

In addition to the significances of considering dynamic n-value and NLSP effects in the TFC 

calculations, other works are on-going or proposed, including:  

1) Expanding the test matrix to increase the number of data points for a more general statistical 

analysis covering different materials, wider range of grades, larger span of strain paths, etc.. 

2) Considerations of different yield criteria and material anisotropy. 

3) Possible variations in work-hardening behavior and effective stress-strain curve under various 

deformation modes and NLSPs [20]. 

4) Utilization of a more accurate data analysis method to determine forming limits [17]. 

5.  Conclusions 

In this work, a new concept named TFC index is developed to evaluate the global formability of sheet 

materials. Contributions from both forming limit and strain distribution ability to the material’s global 

formability are accounted for in this index. The advantages of using TFC over the FLC and other 

parameters of mechanical properties are evinced through a case study to compare the formability of 

the CR590DP and the CR980GEN3. Further, the strength and effectiveness of this new index in global 

formability evaluations are verified using a number of high strength steels. An explicit power law 

relationship is established between the TFC indices and experimental LDH results. The development 

and application of the TFC index promise a straightforward way to assess the overall global forming 

capacity of a material. It also serves as a more precise, yet simple tool for material comparisons and 

selections. Further development is ongoing to improve the accuracy of the index and remove 

undesirable assumptions. 
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