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Abstract. The scratch phenomenon of paint coated sheet metal in multi-stage deep drawing 

has been investigated. The tensile tests at a quasi-static strain rate of sheet metals coated with 

two different types of paint were conducted along the rolling, diagonal, and transverse 

directions of the sheet metal in order to consider strain hardening and anisotropy. It has been 

found that the types of paint are negligible for plasticity behavior. Finite element simulations of 

the multi-stage deep drawing process was performed using the obtained material properties and 

the simulation results were compared with the actual testing. Through the simulation results, 

three approaches, which include the contact pressure, the accumulated slip distance, and the 

accumulated friction work were implemented to investigate the scratch phenomenon and they 

were compared for the scratched and non-scratched regions. It was found that the accumulated 

slip distance at the scratched region was larger than that of the non-scratched region with a 

good correlation from experimental observation, whereas either the contact pressure or 

accumulated friction work approach did not predict the experiments. Therefore, it is concluded 

that the accumulated slip distance is a good method to identify the scratch on the paint coated 

sheet metal during deep drawing process. 

1.  Introduction 

Paint coated sheet metal (PCM) is widely used in home appliances, automobiles, etc., for corrosion 

prevention, aesthetics, and so on. In manufacturing products using PCM, it would be common to 

manufacture pre-coated materials for cost reduction. However, painting of the PCM may be separated 

from substrate during processes and it will cause additional waste and cost. Scratching of the coating 

is a process failure mode. A scratch is caused by the relative motion from mechanical contact between 

two solid bodies. In an effort to understand the scratch of the coatings, various scratch models have 

been proposed. The proposed scratch models were largely based on force or adhesion energy. As 

force-based scratch model, first, Benjamin and Weaver [1] suggested a scratch model based on the 

tangential force applied to materials. Critical shear stress, which is shear stress at the coating-substrate 

interface when the scratch initiates, can be obtained from the suggested model. In addition, they 

proposed a scratch model based on the normal force and this model can be also used to obtain the 



2

1234567890‘’“”

International Deep Drawing Research Group 37th Annual Conference IOP Publishing

IOP Conf. Series: Materials Science and Engineering 418 (2018) 012100 doi:10.1088/1757-899X/418/1/012100

 

 

 

 

 

 

critical shear stress. Ollivier and Matthews [2] proposed a scratch model by modifying the work of 

Benjamin and Weaver [1]. Laugier [3] proposed a scratch model based on the total compressive stress 

acting at the leading edge of the indenter tip and the normal force, including friction effect and 

assuming elastic Hertzian contact. Besides the scratch models based on force, as an energy-based 

model, Laugier [4, 5] introduced the work of adhesion to describe the coating removal. In addition, 

both Bull et al. [6] and Attar and Johannesson [7] proposed scratch models which relate the critical 

load with adhesion energy including friction coefficient. 

As mentioned above, the scratch behaviors are caused by the mechanical contact and the proposed 

scratch models are usually related to the force or energy. Thus, the objective of this study was to 

investigate the scratch phenomenon during multi-stage deep drawing by examining the parameters 

related to the force or energy during the contact, which are contact pressure, accumulated slip distance, 

and accumulated friction work, respectively. For this purpose, the tensile tests of the PCM material 

were conducted. After the tensile tests, finite element simulations of the multi-stage deep drawing 

process were performed. From the finite element analysis results, investigations on scratch 

phenomenon were carried out with the three approaches. 

 

2.  Tensile test at a quasi-static strain rate 

To obtain the material properties of PCM, tensile tests at a quasi-static strain rate were conducted. The 

base material was SUS304 (BA). In addition, there were two types of paints which were coated to the 

sheet metal, one was Hi-Polymer (ARS) type and the other was soft feel type. To identify the 

differences in material properties between the two kinds of the PCMs, tensile specimens were 

prepared for each of the two types of PCMs. To consider anisotropy, specimens were prepared along 

the 0, 45, 90 degrees from the rolling. Specimen design was according to ASTM E8/E8M-16a [8] and 

detailed coating characteristics and specimen dimensions are summarized in Table 1 and Table 2. 

 

Table 1. Coating characteristics for the PCMs. 

Type Hi-Polymer(ARS) Soft feel 

Coating system Base(10 𝜇m) + Top(10 𝜇m) Base(10 𝜇m) + Clear(15 𝜇m) 

Color Black Black 

Gloss 30% 5% 

 

Table 2. Dimensions of the tensile specimen. 

Parts Dimensions (mm) 

Overall length 38.45 

Width 2.40 

Thickness 0.30 

Radius of fillet 12.18 

Length of reduced parallel section 11.00 

Length of grip section 9.60 

Width of grip section 3.84 

 

In order to identify the difference of the properties according to the types of PCMs during tensile 

testing, three tensile tests were performed by randomly selecting the test specimens for each type of 

PCMs. Table 3 shows the paint types of the specimens along the rolling, diagonal, and transverse 

directions used in the tensile test. Material testing has been conducted with and without coating. It has 

been found that there is no difference in the hardening behavior. So, the coating and interface effects 

have been ignored. 
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In the tensile test, the cross head speed of the test machine was set to 0.66 mm/min which 

maintains the strain rate of 0.001 /s and the strain was calculated using the Digital Image Correlation 

(DIC) method. Figure 1 shows engineering stress-strain curves for the rolling, diagonal, and transverse 

directions, respectively. From Figure 1, it has been shown that the stress-strain behaviors show the 

noticeable anisotropy for RD, DD and TD directions with very good repeatability within each 

direction. 

 

Table 3. Paint types of the specimens. 

 Rolling Diagonal Transverse 

Specimen #1 Hi-Polymer(ARS) Hi-Polymer(ARS) Hi-Polymer(ARS) 

Specimen #2 Soft feel Soft feel Hi-Polymer(ARS) 

Specimen #3 Soft feel Soft feel Soft feel 

 

Figure 1. Engineering stress strain curves of PCMs: (a) rolling direction, (b) diagonal 

direction, (c) transverse direction. 

 

Yield strength (YS), ultimate tensile strength (UTS), and r-value (Lankford’s coefficient) for each 

direction of the PCM were calculated from the test and they are summarized in Table 4. To consider 

strain hardening behavior, Swift hardening model was assumed and its coefficients were calculated by 

fitting true stress-strain curve of specimen for the rolling direction. The Swift hardening model with 

the coefficients obtained from the test result is shown in Equation (1). 

  
0.709

p1,840 0.078  (MPa)     (1) 

In addition, Hill’s yield function [9] given by Equation (2) was used to model the anisotropic 

plastic behavior of the PCM. Coefficients, which are F, G, H, and N, were obtained from the average 

r-value shown in Table 4. The obtained coefficients were 1.298F  , 1.034G  , 0.966H  , and 

4.281N  , respectively. 

    2 2 2 2

11 22 11 22 122 2 2 1G H F H H N              (2) 

 

Table 4. Yield strength, Ultimate tensile strength and r-value of the PCM. 

 RD DD TD 

 
YS 

(MPa) 

UTS 

(MPa) 
r-value 

YS 

(MPa) 

UTS 

(MPa) 
r-value 

YS 

(MPa) 

UTS 

(MPa) 
r-value 

Specimen # 1 301.4 758.3 0.9280 271.4 695.4 1.318 293.6 726.3 0.7353 

Specimen # 2 310.9 761.7 0.9381 286.1 703.1 1.283 315.3 737.5 0.7235 

Specimen # 3 328.1 768.3 0.9348 303.5 696.5 1.406 305.0 721.5 0.7739 

Average 313.5 762.8 0.9336 287.0 698.3 1.336 304.6 728.4 0.7442 
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3.  Finite element simulation of multi-stage deep drawing 

In order to investigate the scratch phenomenon of the PCM during the multi-stage deep drawing 

process, finite element analysis using the commercial finite element code Abaqus/Explicit was 

performed for the deep drawing processes. Figure 2 shows three dimensional model for deep drawing 

simulation and equivalent plastic strain distributions for each stage. In Figure 2(a), the parts shown in 

brown, blue, gray, and turquoise are blank, blank holder, punch, and die, respectively. 

 

Figure 2. Three dimensional models for deep drawing process and equivalent plastic strain 

distributions for each stage: (a) all parts, (b) equivalent plastic strain distribution for 1st drawing, (c) 

for 2nd drawing, (d) for 3rd drawing, (e) for 4th drawing. 

 

In this simulation, the parts except for the blank were modelled as a rigid body and the blank was 

modelled as deformable body where density, Young’s modulus, and Poisson’s ratio were 8,000 kg/m3, 

200 GPa, and 0.29, respectively. Plastic behavior was also modelled by using the strain hardening 

curve and yield function obtained from the tensile test given by Equation (1) and Equation (2). 

In finite element modelling, the entire parts were discretized by finite element meshes. When 

generating the mesh system, 4-noded shell elements with reduced integration (S4R) was used for the 

blank. For other parts, 3-noded triangular and 4-noded quadrilateral rigid elements (R3D3, R3D4) 

were employed. As the boundary conditions, the blank holding force was 500 N and the punch speed 

was 200 mm/s. Normal contact and friction contact were also employed to model the contact between 

the blank and the tools. Coefficient of friction was tuned to be 0.01 in order to match the actual 

drawing height. In this FE models, interface models between the coating and the base metal were not 

implemented because the objective of this study was to investigate scratching using the parameters 

related to contact. 

Figure 3. FE simulation results and actual drawing results for each drawing processes: (a) for 1st 

drawing, (b) for 2nd drawing, (c) for 3rd drawing, (d) for 4th drawing. 
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Figure 3 shows the actual drawing and simulation results of the FE model described in the above. 

As shown in Figure 3, the cup heights for each drawing process were close between the simulation 

results and the real products. These simulation results were used for the investigation of scratch 

phenomenon of PCM. 

4.  Investigation on scratch 

As mentioned earlier, in order to investigate and model the scratch behavior of the PCM, the 

parameters related to the contact between the PCM and the tools were investigated. The parameters 

investigated in this study were the contact pressure, the accumulated slip distance, and the 

accumulated friction work, respectively. The investigation was conducted by observing scratched and 

non-scratched regions after each drawing process in the real products and calculating the parameters at 

the regions in the FEA results. Then, the calculated values in the scratched regions and the non-

scratched regions were compared. In addition, in the investigation of the scratch of the PCM, the 2nd 

drawing were excluded because the experimental results were not stable. The detailed investigation 

results are described below. 

 

4.1.  Contact pressure 

The contact pressure between the blank and the dies during each drawing processes were extracted 

from the analysis results to confirm the effect of the contact force on scratch. The maximum value of 

the contact pressure in the scratched and non-scratched regions were taken and compared. Figure 4 

shows the maximum contact pressure distributions in the selected regions and the normalized drawing 

time at which it occurred with the views of the real products after each drawing. In Figure 4, a black 

line is the best line that distinguishes the scratched and non-scratched region and the region that 

appears silver in the real products is the peeled region. As shown in Figure 4, it was found that the 

maximum contact pressures difference between the scratched and non-scratched regions were not 

apparent for all drawing processes except for the 4th drawing. Thus, the maximum contact pressure 

would not be sufficient to model the scratch behavior of the PCM. 

 

 

 

 

 

 

 

 

 

(a)                                                                          (b) 

 

 

 

 

 

 

 

 

 

(c) 

Figure 4. Maximum contact pressure distributions for each drawing processes (Red: 

scratched, Blue: non-scratched): (a) for 1st drawing, (b) for 3rd drawing, (c) for 4th drawing. 
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4.2.  Accumulated slip distance and accumulated friction work 

The objective of comparison of the accumulated slip distance was to confirm the effect of slip distance 

between the blank and the dies to the scratch. The method was similar to the comparison of the contact 

pressure: observing the scratched and non-scratched regions in the real products and calculating the 

accumulated slip distance at the selected regions from the FEA results. In this section, the word 

“accumulated” means summation from the 1st drawing to current drawing process. For example, the 

accumulated slip distance for the 3rd drawing process means the slip distance for the 1st drawing plus 

the one for the 2nd drawing plus the one for the 3rd drawing process at the selected region. Figure 5 

shows the accumulated slip distance distributions for each drawing processes and a black line has the 

same meaning as the black line in Figure 4. 

From Figure 5, it could be found that there were differences of the accumulated slip distances for 

the 1st drawing process at the scratched and non-scratched regions, i.e. the accumulated slip distance 

at the scratched regions were larger than that of the non-scratched regions. This tendency would also 

appear to have appeared in the 3rd and 4th drawing processes. 

 

 

 

 

 

 

 

 

 

 

 

                                     (a)                                                                             (b) 

 

 

 

 

 

 

 

 

 

 

(c) 

Figure 5. Accumulated slip distance distribution for each drawing process. (Red: scratched, 

Blue: non-scratched): (a) for 1st drawing, (b) for 3rd drawing, (c) for 4th drawing. 

 

In addition to the accumulated slip distance, the accumulated friction work was calculated and 

compared. The accumulated friction work was calculated from Equation (3), using the contact force 

and the slip distance when the contact took place. In Equation (3), k means the drawing step, 𝐹𝑛, x, and 

μ mean the contact (normal) force, the slip distance, and the coefficient of friction, respectively. The 

word “accumulated” has the same meaning as the word described in the accumulated slip distance 

calculation. For example, the accumulated friction work for the 3rd drawing means the summation of 

friction work from 1st to 3rd drawing processes. 
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Figure 6 shows the accumulated friction work distributions at the selected regions calculated from 

Equation (3) and the best line that distinguishes the scratched and non-scratched region. As shown in 

Figure 6, the accumulated friction work at the scratched regions seemed to be larger than that of the 

non-scratched regions for all drawing processes. 

 

 

 

 

 

 

 

 

 

 

 

 

                                       (a)                                                                             (b) 

 

 

 

 

 

 

 

 

 

 

(c) 

Figure 6. Accumulated friction work distributions for each drawing process. (Red: 

scratched, Blue: non-scratched): (a) for 1st drawing, (b) for 3rd drawing, (c) for 4th 

drawing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                               (b) 

Figure 7. Accumulated slip distance and accumulated friction work distribution using mean and 

standard deviation: (a) accumulated slip distance, (b) accumulated friction work. 
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From the previous two results, it can be shown that there were the trends that the scratched regions 

have larger values of the accumulated slip distance and accumulated friction work than the non-

scratched regions. To analyze the distribution of the parameters intensively, the mean and standard 

deviation were calculated. Figure 7 shows the distribution of each parameter using the mean and 

standard deviation. In Figure 7, when the mean value is m  and the standard deviation is  , the square 

box, upper bar, and lower bar mean m , m  , and m  , respectively. 

From Figure 7, it was found that the accumulated slip distance distribution can be more clearly 

distinguished with the best dividing line, whereas the accumulated friction work has some violation. 

Thus, it could be found that the accumulated slip distance can explain the scratch behavior of the PCM 

and could be physically explained that the coating of the PCM would be scratched due to slip during 

the deep drawing processes. 

 

5.  Conclusion 

In this study, the scratch phenomenon of the paint coated sheet metal during multi-stage deep drawing 

processes was investigated considering the contact pressure, the accumulated slip distance between the 

blank and dies, and the accumulated friction work. From the investigation results, it was found that the 

accumulated slip distance could distinguish the scratched and non-scratched regions while either 

maximum contact pressure or the accumulated friction work could not. Therefore, it is concluded that 

the accumulated slip distance can be used as a measure for estimating the regions susceptible to the 

scratch during deep drawing process. 
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