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Abstract. A passive flow control method over a circular cylinder using perforated shrouds was 

computationally investigated to manipulate the unsteady wake behind the circular cylinder for 

vortex shedding suppression. The perforated shrouds were of 33% porosity with uniform and 

non-uniform holes. The computation was performed at low Reynolds number (based on the 

circular cylinder diameter), Re=300. The objective of the study is to examine the effect of hole- 

uniformity of the perforated cylinders on the vortex shedding behind the circular cylinder. It 

was found that both perforated shrouds (uniform and non-uniform holes) significantly 

suppressed the vortex shedding behind the cylinder, although with an increased drag due to 

normalization according to cylinder diameter. The perforated shrouded cylinder with non-

uniform holes has longer vortex formation length, suppressing vortex better than that of the 

uniform holes distribution. The intensity of vortices behind the shrouded cylinder wake with 

non-uniform holes was also considerably smaller than that of the uniform holes. 

1. Introduction 

Flow over circular cylinder is one of the most studied in fluid dynamics and relevant to many 

engineering applications. At critical Reynolds number, this flow is characterized by flow separations 

and vortex shedding behind the cylinder wake. The shedding of vortices results from the rolling up of 

the shear layers originated at the separation point.  These vortices may lead to unwanted vibration 

when the shedding frequency matches the resonance frequency of the cylinder. This phenomenon is 

called Vortex induced Vibration (VIV). VIV can accelerate fatigue damage to the cylinder.  

A number of passive control techniques have been explored and suggested to reduce drag, suppress 

fluctuating lift and mitigate vortex shedding from circular cylinders.  These techniques include helical 

strakes, shrouds, splitter plates, guiding vanes and base bleed [1]. Passive control via perforated 

shrouds was first studied by Price [2]. Price demonstrated that VIV suppression could be achieved by 

the shrouds due to the delay in the formation of vortex street. Every et al. [3] reported that shrouds 

with the optimum dimension gave a 50% reduction in oscillations of a plain cylinder in suppressing 

flow induced vibrations. In the recent years, shrouds using screens have also been studied by 

researchers for VIV suppression [4, 5]. Interestingly, Huera-Huarte [6] found that about 95% VIV 

attenuation in addition to 20% drag reduction was achieved using wire meshes.  

Mitigation in vortex shedding via shrouds also led to noise suppression. Ikeda and Takaishi [7] 

showed that suppression of Aeolian tone was achieved due to the jets emitted from the holes of 

perforated cylinder at regular interval. Boorsma et al. [8] discovered that the associated broadband 



2

1234567890‘’“”

5th International Conference on Mechanics and Mechatronics Research (ICMMR 2018) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 417 (2018) 012036 doi:10.1088/1757-899X/417/1/012036

 

 

 

 

 

 

noise level is reduced remarkably by using perforated fairings due to the breakdown of the vortex 

shedding process.   

In the turbulent wake regime, vortex shedding occurs in cells along the spanwise direction for Re>200 

[9]. These cells are also out of phase, thus reducing the maximum resultant force acting on the 

cylinder. The average length of the cells may be termed the correlation length. Azmi et al. [10] found 

that a low correlation length was associated with small scale weak vortices indicating an enhanced 

three dimensionality in the flow. It is conjectured that by making the holes size of the perforated 

shroud non-uniform, a greater three dimensionality of the wake can be achieved, hence further 

suppressing the vortex shedding and reducing lift force. Therefore, this paper aims to investigate the 

effect of hole- uniformity of the shrouds on the vortex shedding behind a circular cylinder at low 

Reynold number. Two different porosity representing porosity lower than 50% and below 50% was 

studied, but only results for the 33% porosity are reported preliminary in this paper.   

2. Methodology 

The creation of model was done in the Ansys 16 Workbench. The model of the circular cylinder with 

the perforated cylinder (hereafter is referred to as perforated shrouded cylinder) is shown in Figure 1 

and 2. The diameter ratio between the perforated cylinder and the circular cylinder, D/d was set at 2. 

The Reynolds number, Re was 300 based on the circular cylinder diameter, d. The computational 

domain was large to eliminate the effects of the blockage and outlet pressure. The streamwise spacing 

of 40D was chosen behind the cylinder and a 20D spacing was created on each side of the cylinder. 

Using the porosity definition, β= void area/ total area, the perforation area of the perforated cylinder 

was fix at an angle of 10° for the uniform holes while three different perforation angles of 5°, 10°, and 

15° were used to model the non-uniform holes as shown in Figure 2. The simulation was performed 

for two different porosity values: 33% and 55%. However, only results using 33% porosity are 

presented in this paper.  

 

 

  

 

Figure 1. Two dimensional flow over perforated 

shrouded cylinder. 

 Figure 2. 33% porosity perforated cylinder 

model (uniform and non-uniform holes). 

  

Figure 3 shows the mesh used in the two dimensional 2-D simulation. The employed mesh was 

structural mesh. A grid independency study is conducted to ensure a grid–independent solution with 

high quality mesh. The study was done by increasing the numbers of cells and nodes of the mesh 

around the cylinder. The mesh elements and the results of Strouhal number and drag coefficients are 

summarized in Table 1. The grid convergence results reveal that M2 and M3 mesh provide similar 

outcomes in terms of the Drag Coefficient, however the Strouhal number is slightly changing. 

Therefore, mesh M3 is considered to give good grid resolution for the models. The grid independence 

study was only conducted for the shrouded cylinder of 55% porosity. A similar fine mesh scheme was 

used for the 33% porosity. 
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Figure 3. Mesh structure around perforated shrouded cylinder. 

The simulation was performed using viscous laminar model with transient time for unsteady flow at 

Re=300. The wall and cylinder setup was no-slip condition and stationary wall boundary conditions. 

The second implicit solution was utilized. The simulation used hybrid initialization and the time step 

size was 0.001s for 1500 number time with 50 maximum iterations per time step to capture the flow 

structure at the wake region of the cylinders. 

Table 1. Grid independence study 

55% uniform perforated shrouded cylinder 

Mesh Nodes Cells Drag Coefficient, Cd Strouhal Number, St 

M1 38209 37808 1.35 0.080 

M2 39454 39019 1.35 0.075 

M3 42602 42114 1.36 0.070 

55% non-uniform perforated shrouded cylinder 

Mesh Nodes Cells Drag Coefficient, Cd Strouhal Number, St 

M1 35591 35187 1.33 0.100 

M2 36658 36214 1.33 0.090 

M3 39383 38901 1.33 0.085 

3. Results 

Results are presented in terms of force coefficients, Strouhal number, velocity contours, velocity 

vector plot and vorticity contours. Comparison are made between the wakes of uniform and non-

uniform holes shrouded cylinders on vortex shedding behaviour and suppression.   

3.1 Model validation 

The simulation was first validated by comparing result of the flow over a circular cylinder with 

experiment and other simulation. The validation was done to ensure the right simulation setup. Both 

simulation and experimental results were in good agreement with each other, a difference of between 

1% and 10% as shown in Table 2.  

 

Table 2. Strouhal and drag coefficient at Re=300 

Circular cylinder 

 Drag Coefficient, Cd Strouhal Number, St 

2D- computation Mital and Balachandar, 1997 [11] 1.26 0.213 

2D-Numerical simulation  [12] 1.37 0.215 

Experiment [13] 1.22 - 

Experiment [14] - 0.203 
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Present study 1.28 0.21 

33% porosity perforated shrouded cylinder 

Uniform  1.43 0.10 

Non-uniform  1.52 0.08 

3.2 Drag and Lift Coefficient  

Figure 4 shows the time history of the drag and lift coefficient, Cl and Cd, respectively for the circular 

cylinder and perforated shrouded cylinders (uniform and non-uniform holes). The periodic sinusoidal 

nature of the flow in the circular cylinder is obvious due to the presence of correlated vortex shedding. 

This is in contrast to the flow in the perforated shrouded cylinders where the oscillation are 

significantly damped signifying very low correlation of vortex, especially observed in that of the non-

uniform holes. The drag coefficients for both shrouded cylinders are quite similar, with the non-

uniform holes cylinder gives slightly larger value than that of the uniform-holes, but both values are 

about 20% higher than that of a circular cylinder as tabulated in Table 2. This is due to the normalizing 

the parameter based on the circular cylinder diameter. 

 

 

 

 

 

 

 

a) Circular cylinder 

 

 

 

 

 

 

b) Shrouded cylinder with uniform holes (β=33%) 

 

 

 

 

 

 

c) Shrouded cylinder with non-uniform holes (β=33%) 

Figure 4. Time history of Drag and Lift coefficient and Strouhal number for circular cylinder and 

perforated shrouded cylinder at Re=300. 

3.3 Strouhal number 

Figure 4 also shows the Spectral Analysis of Lift Convergence for the circular cylinder and perforated 

shrouded cylinder, obtained using Fast Fourier Transform.  The amplitude spectrum of the Lift is 

plotted as a function of the dimensionless frequency. A sharp peak of large amplitude is observed for 

the circular cylinder wake at St=0.2, whereas several peaks of substantially low amplitude are evident 

for the shrouded cylinder wake with the highest peaks occur at St of around 0.1, indicating vortex has 

been suppressed. A considerably lower amplitude is observed by the non-uniform holes in comparison 

to that of uniform holes indicating the former suppress vortex better than the latter. 
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3.4 Velocity contour and velocity vector 

Figure 5 shows the normalize velocity contour and velocity vector for the circular cylinder and 

perforated shrouded cylinders. The circular cylinder shows a reverse flow immediately downstream, 

circulating in the wake, whereas both the shrouded cylinders reveal that circulation is mainly observed 

in the annular region between the cylinder and the perforated cylinder. At the central region, region of 

significantly low velocity is observed clearly in both shrouded cylinder wakes. This region is 

elongated farther down the wake of the non-uniform holes in comparison to that of the uniform holes. 

It seems that this ‘void’ region prevents early interaction of the shear layers to form the large coherent 

vortices in the wake.  

 

 

 

 

 

 

 

a) Circular cylinder 

 

 

 

 

 

 

b) Shrouded cylinder with uniform holes (β=33%) 

 

 

 

 

 

 

c) Shrouded cylinder with non-uniform holes (β=33%) 

Figure 5. Normalized velocity contours , velocity vectors and vorticity contours. 

3.5 Vorticity contour  

Figure 5 also shows the vorticity contour in the wake of all cylinders. The red color indicates 

clockwise vortices while the blue indicates counterclockwise vortices. Formation of vortices of high 

intensity occurs immediately behind the circular cylinder while low intensity vortices occurs quite a 

distance downstream in the wake of the shrouded cylinders. The vortex formation length for the 

shrouded cylinders is longer for the non-uniform holes in comparison to that of the uniform holes, 

consistent with the Lift, Strouhal and velocity contour results discussed previously.  

4. Conclusion 
Numerical simulations for two dimensional flow over perforated shrouded cylinders at Reynolds 

number of 300 were performed to understand the effect of hole-uniformity in controlling the wake 

behind a circular cylinder. Results showed that the shedding of vortex was controlled significantly in 

the wake of the circular cylinder using both perforated cylinders with uniform and non-uniform holes 

of 33% porosity, but superior suppression was achieved with that of non-uniform holes, indicated by 

the low intensity vortices and long vortex formation length. This suppression however, does not take 
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into account the effect in the spanwise direction which would further enhance the vortex suppression 

effect.  

Acknowledgments 

AMA wishes to acknowledge financial support from Universiti Teknologi MARA and the Ministry of 

Higher Education Malaysia (600-RMI/FRGS 5/3 (0100/2016)). 

References 

[1] Zdravkovich MM 1981 Review and classification of various aerodynamic and hydrodynamic 

means for suppressing vortex shedding J. Wind Eng. Ind. Aerodyn. 7(2) 145-189 

[2] Price P 1956 Suppression of the fluid-induced vibration of circular cylinders J. Eng. Mech. 82(3) 

1-22 

[3] Every MJ, King R, Weaver DS 1982 Vortex-excited vibrations of cylinders and cables and their 

suppression Ocean Eng. 9 135–157. 

[4] Azmi AM, Zhou T, Cheng L, Wang H, Chua LP 2012 On the Effectiveness and Mechanism of 

Vortex-induced Vibration Suppression using a Screen Cylinder The Twenty-second 

International Offshore and Polar Engineering Conference  International Society of Offshore 

and Polar Engineers 

[5] Azmi AM, Zhou T, Zhou Y, Chen J, Cheng L 2015 The effect of a screen shroud on vortex-

induced vibration of a circular cylinder and its wake characteristics The Twenty-fifth 

International Ocean and Polar Engineering Conference International Society of Offshore and 

Polar Engineers 

[6] Huera-Huarte FJ 2017 Suppression of vortex-induced vibration in low mass-damping circular 

cylinders using wire meshes Mar Struct. 55 200-213 

[7] Ikeda M, Takaishi T 2004 Perforated pantograph horn aeolian tone suppression mechanism Q. 

Report of RTRI, 45(3) 169-174 

[8] Boorsma K, Zhang X, Molin N, Chow LC 2009 Bluff body noise control using perforated fairings 

AIAA J. 47 33-43 

[9] Sumer BM 2006 Hydrodynamics Around Cylindrical Structures (World scientific) 

[10] Azmi AM, Zhou T, Zhou Y, and Cheng L 2016 Statistical analyses of a screen cylinder 

wake Fluid Dyn. Res. 49(1) 015506 

[11] Mittal R, Balachandar S 1997 On the inclusion of three-dimensional effects in simulations of two-

dimensional bluff-body wake flows Proc. of the ASME Fluids Eng. Div. Summer Meetg. 

(Vancouver) 

[12] Rajani BN, Lanka HS and Majumdar S 2005 Laminar flow past a circular cylinder at reynolds 

number varying from 50 to 5000 NAL PD CF 0501 

[13] Wieselsberger C New data on the law of hyfro and aerodynamic resistance 1992 NACA TN 84 

[14] Williamson CHK 1996 Vortex dynamics in the cylinder wakes Ann. Rev. Fluid Mech. 28 477-539 

 


