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Abstract. The metallic implants represent a major class of the hard tissue replacement materials. 

In order to enhance the surface properties of the titanium alloys multicomponent coatings 

containing ceramic phases are employed to improve the tribological performance, corrosion 

resistance and biocompatibility. The mechanical properties (elastic modulus, necking region, 

loss of adhesion) of arc PVD TiN and TiN/TiO2 coatings deposited on unalloyed Ti (99 wt. %) 

foil were examined by nanoindentation, uniaxial tensile test while applying a new approach - 

using thermal imaging camera during the test. The hardness of the TiN coating reached values 

of 9649 MPa and 67 GPa, while that of the TiN/TiO2 was lowered down to 8774 MPa and 58.5 

GPa which low values are closer to that of the cortical bone. The mechanical behavior of 

TiN/TiO2 coated material characterized it as a more plastic system indicating a good 

deformability while the TiN displayed more fragile behavior. There were no signs of loss of 

adhesion or loss of coating integrity up to maximum load for all tested TiN and TiN/TiO2 coated 

samples. Тhe thermal analysis proves that the coated samples show lower thermal conductivity, which 

is very important for the performance of an endosseous dental implant for example. 

 

1. Introduction 

Identifying the mechanical properties of a material is an issue of importance for its specific application. 

Various technologies are being used in order to enhance the surface characteristics of different materials 

[1-3]. As technologies develop, different methods are effectively implemented of surface modifications 

for metals and alloys used in implantology. All of them aim at increasing the biocompatibility and 

addressing the shortcomings of a particular implant material. Titanium and its alloys are in the scope of 

many scientific works applying a different kind of coatings [4-8]. The major drawbacks of these 

orthopedical materials are that they are relatively soft and have poor wear resistance [9]. Up to the 

present day, the scientists continue to seek for surface modifications that increase the mechanical 

biocompatibility and in vivo performance of the exogenous material. The ceramic coatings of 

biocompatible or bioactive materials could successfully enhance both osseointegration and mechanical 

properties of the surface. Unfortunately, such coatings are fragile and special conditions of deposition 

and implantation are required. If the coating is fragmented, corrosion and inflammatory processes 

leading to early explantation may occur. In this respect, the study focuses on the examination of the 

change of the mechanical properties of PVD deposited TiN after subsequent glow discharge oxidation 
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that produces the superficial TiO2 film. The coatings were deposited on 0.1 mm thick Ti foil enabling 

to assess the change in the mechanical properties by uniaxial tensile test and nanoindentation. 

 

2. Experimental procedures 

The substrate material used was Ti foil received in the form of sheets with the following dimensions: 

100300 mm and thickness of t0 = 0,1 mm. The chemical composition shown in Table 1 was determined 

by JEOL JXCA-733 Microprobe scanning electron microscope (SEM) equipped with wavelength 

dispersive spectrometers (WDS). 

 

Table 1. Chemical composition (wt. %) of the substrate material. 

Element Al V Mo Sb Hf Pd Cd Fe Ti 

Bare Ti 0.11 0.26 0.33 0.12 0.076 0.055 0.019 0.002 Bal. 

 

Samples were cut out from the sheet material in one direction with respect to the rolling one as shown 

in Figure 1 c. The sheet samples were with the following dimensions: Lo = 50 mm, Lc = 90 mm, Lt = 

150 mm and b0 = 12.5 ± 0.2 mm. 

For the cathodic arc deposition of the TiN, a sidewall positioned evaporating system in a cubic 

vacuum chamber with water-cooled walls was used. The samples were hanged near the center of a 

clockwise-rotating with a frequency of 0.5 Hz turntable. To ensure the coating stress relaxation and 

necessary adhesion a very thin pure layer from the target (at 2.5×10-1 Pa in Ar atmosphere for 5 min., 

bias 600 V, 110 A arc current) was applied. The TiN film was made in a pure N2 atmosphere at 280-290 

°C substrate temperature for a time of 60 min., 108 A arc current, bias 250 V and 7.5×10-1 Pa pressure 

in the working chamber. The TiO2 film was made by glow plasma discharge using the uppermost located 

sputtering system in the same chamber. A bias voltage of 1340 V (720 mA current) in a pure O2 

atmosphere at a pressure of 6×100 Pa were applied for a deposition time of 240 min. Both layers’ 

thickness (TiN - 2.7 μm, TiO2 - 0.8 μm) was attained by means of calotest measurements. 

 

а)  b)  c) 

Figure 1. Tensile test equipment and samples: а) universal testing machine; b) SEEK Thermal 

Compact Pro camera together with the screen and clamp; c) test samples for the uniaxial tensile test 

(ISO-6892-1:2016) – scheme and appearnce of the uncoated, TiN and TiN/TiO2 coated samples. 

 

The static uniaxial tensile test was performed on a universal testing machine Instron-3384 (Figure 

1a) on the base of the same standard, supplied with a software Bluehill-3. Five of each sample – 

uncoated, TiN-coated and TiN/TiO2 coated were examined. For each test control measurements of the 

working length of testing, height and width were held and the values were set in the used test method 

via the software program. For the purpose of the testing method, a constant strain rate of 1 mm/min until 

the load fell down to 300 N and capturing intervals 10 ms of was used. The data were saved in an 
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appropriate digital form for subsequent analysis. Simultaneously, SEEK Thermal Compact Pro camera 

with the following characteristics: temperature range – -30 ÷ +330 °C; the size of the thermal sensor - 

320х240 pixels, thermal response below 70 mK, spectral range - 7.5÷14 μm, capturing rate - 15 frames 

per second was used to obtain thermographic images. The thermal camera was equipped with a mobile 

device with workable software Seek Thermal v.2.1.1.3 (Figure 1 b). The set was adjusted in position to 

the front of the thermal chamber of the testing machine by a stalk. The camera and machine 

synchronization were done by joining their software. The real-time monitoring and registration of the 

thermal fields at the surface of the sample and in the room were obtained during the tensile test. The 

data collected from the set of thermographic images were used for assessment of the degree of non-

uniformity of the thermal field that leads to stresses and deformations occurring in the samples.  

The nanohardness values of the TiN and TiN/TiO2 coating were measured using fine polished Ti foil 

in order to minimize the surface roughness values. A Vickers nanoindentation tester FISCHERSCOPE 

H100 using a load force of 20 mN was utilized to determine the Martens hardness HU, plastic hardness 

Hpl and Young’s modulus E of the coating. The coating failures were evaluated by JEOL JXCA-733 

(Japan) employing accelerating voltage of 19.8 kV. 

 

3. Results and discussions 

The values of the coating hardness calculated from the force-depth data of the nanoindentation test are 

plotted in Table 2. Taking into account the thickness of the coatings, it could be expected that the 

measured values were influenced by the substrate material used. 

 

Table 2. Hardness values of the TiN and TiN/TiO2 coating measured with 20 mN load. The 

abbreviations used stands for HU – universal hardness; Hpl - plastic hardness; h – penetration depth, E 

- Young’s modulus, Wtotal – total energy for elastic and plastic deformation, Wr – plastic deformation 

part of Wtotal 
Coating HU, MPa Hpl, MPa h, 𝜇m E, GPa Wtotal, nJ 

nn nJ 

Wr, % 

TiN 5667±799 9649±4226 

 

0.365±0.06 

 
67±5.1 2.1±1.2 24.7±10.3 

TiN/TiO2 4708±546.8 8774±816. 0.401±0.03 58.5±4.8 6.7±1.8 41±14.8 

 

The oxide deposition on the surface of the nitride resulted in a decrease of hardness and elastic 

modulus thus closing the mismatch between the bone (E = 9-28.4 GPa [10]) and implant modulus. The 

nanohardness of arc PVD TiN measured by Hernández L C et al. [11] grown at -300 V bias substrate 

was higher (17.6 MPa) than the values assessed in the present work. This difference could be attributed 

to the higher nitrogen content in the gas atmosphere used in the particular study, higher load, the pure 

Ti substrate material, surface roughness and the resultant coating texture. The universal hardness of the 

TiN/TiO2 coating decreased by about 16.92% as opposed to the TiN coated sample. The TiN/TiO2 plastic 

hardness reduced by 9.07% on average while the elastic modulus lessened by 12.78 % compared to the 

TiN coating. These facts imply that the oxidation of the nitride has led to internal stresses’ reduction 

and improvement of plasticity. That is why the total energy for elastic and plastic deformation was 

increased by 3.2 % after the TiO2 deposition and simultaneously the plastic deformation part of Wtotal 

rose up by 66% as opposed to the nitride coating.  

After averaging the uniaxial tensile tests results of four tested samples of each kind (uncoated Ti, TiN 

and TiN/TiO2 coated), the gathered values were processed and the diagram considered as a 

representative was the one with the closest mechanical properties to the average results from each 

indicator diagram. The representative indicator diagrams for the bare Ti, TiN and TiN/TiO2 coated 

samples are shown in Figure 2.  

For all three samples, because of the smooth transition from elastic to plastic area, the tensile strength 

at yield had not been established. The absolute extension of the Ti after the TiN deposition significantly 

reduced its values for the account of an increase in the tensile strength (Figure 2 a). After oxidizing the 

nitride, a stable downward trend of reducing the tensile strength together with a slight increase in the 

absolute elongation was observed. Because the applied load and the extension are not additive values, 

it is not appropriate to be compared. In order to compare the values from the tensile tests, a tensile stress 
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(σ) – tensile strain (ε) diagram is presented in Figure 2 b. This diagram allows to identify the strength 

values of the samples - Young’s modulus (E), load at the elastic limit (Re), tensile stress at maximum 

load (Rm) and tensile stress at tensile strength (σu). Additionally, the plasticity characteristics - 

elongation at tensile strength (εm), elongation at break (εu) and relative contraction after the break (Z) 

for the substrate and the coatings were also determined. The calculated values are presented in Table 3. 

 

a) 

b) 

Figure 2. Representative indicator diagrams of: a) extension – applied load, b) tensile stress – tensile 

strain. 

 

Table 3. Tensile test values of the tested samples: Re - load at the elastic limit; E - Young’s modulus, 

Rm - tensile stress at maximum load; σu - tensile stress at tensile strength; εm - elongation at tensile 

strength; εu - elongation at break; Z - relative contraction after the break. 

Coating Re , MPa Е, GPa Rm, MPa  σu, MPa m, % εu, % Z,% 

Ti 184.75.4 64.17.7 306.710.6 305.610.6 14.61.7 14.91.9 17.6±3.5 

Ti/TiN 227.222.1 70.812.8 398.510.9 398.512.2 1.90.1.1 

 
1.90.4 3.8±0.9 

Ti/TiN/TiO2 154.442.2 64.317.7 

 

38013.4 365.5 2.40.5 4.70.8 6.1±1.8 

 
 

The load at the elastic limit for the bare Ti samples showed average values of 184.7 MPa while those 

coated with TiN indicated higher average values - 227.2 MPa, which were 18.72 % higher than those of  

the uncoated sample. For the TiN/TiO2 coated samples, the average load at elastic limit decreased to 

154.4 MPa, which means 32.03 % reduction, as opposed to the only nitride coated sample. The results 

from the load at elastic limit of the coated samples indicate that the elastic strength of the materials lies 

with the surface film, especially when it has enhanced mechanical properties. The elastic modulus of 

the Ti foil amounted to about 64.1 GPa and after the TiN deposition it rose up to the average value of 

70.8 GPa that means an increase of 9.55 %. After the oxidation, the modulus decreased to 64.3 GPa 

which was 9.13% less than that of the TiN coating. The decrease in Young’s modulus for the TiN/TiO2 
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coating points that the oxidized material would have higher toughness against brittle fracture because of 

the lower internal stresses. The tensile stress at maximum load for the nitride coated sample (Rm - 398,5 

MPa) was about 23.04% higher than that of the bare substrate (Rm - 306.9 MPa) for the account of a 

decrease of plasticity of the TiN (m – 1.86 %) of over 7 times as opposed to the Ti substrate (m – 14.61 

%). After oxidation of the coating, the tensile stress at a maximum load slightly decreased (Rm - 380 

MPa) with 4.66 % on average. This had a beneficial effect on the plasticity of the ТiN/TiO2 that rose up 

with 29 % compared to the ТiN coated sample. There were no signs of loss of adhesion (de-bonding 

from the substrate or in between the layers) or loss of coating integrity up to maximum load for all TiN 

and TiN/TiO2 coated samples. 

 

а)  b)  c) 

Figure 3. Macrographs of the tested samples in the ruptured area after the uniaxial tensile test: а) bare 

Ti foil, b) ТiN coated sample, c) ТiN/TiO2 coated sample. 

 

The macrographs of the tested samples in the place of the necking region are presented in Figure 3. 

Local reorientations and fractures were identified only near the necking region and fractured surfaces.  

For the coated samples Lṻders bands also appeared at the surface. By analogy with the steels, their 

appearance could be associated with the presence of interstitial N in the Ti substrate because of the 

diffusion of the element during the deposition process that was characterized by heavy ion bombardment 

and increased temperature of the substrate material. The strength in the fractures area after the TiN 

deposition (u – 398.5 MPa) indicated 23.3% higher values as opposed to the bare Ti foil (u – 305.6 

MPa). This change was accompanied by lowering the elongation at break with about 8 times (Тable 2). 

After the TiN deposition, the relative contraction after the break (Z – 3,8%) also lessened by 4 times 

compared to the bare Ti (Z – 17,6%) indicating the ability of the surface to retain the initial geometrical 

form of the implant if fractures or local effects occur. The oxidized coated samples indicated Z values 

close to 6.1 %, which were 1.58 times lower than the values of the TiN-coated sample. The mechanical 

behavior for the TiN/TiO2 coated material characterized it as a more plastic system (Figure 3.c) 

compared to the ТiN coated samples (Figure 3.b). These results complied with the measured 

nanoindentation values. The u/m for the TiN/TiO2 coating was equal to 1.94 indicating a good 

deformability while that ratio for the TiN coated sample amounted 0.998 suggesting more fragile 

behavior. 

The SEM micrographs of the bare Ti sample shown in Figure 4 a, clearly demonstrates the 

roughening of the surface near the necking zone due to the extensive grains’ reorientation. At higher 

magnification, some sets of twins and slip lines formed by the higher stress in the hexagonal-close 

packed (hcp) lattice were also seen. The observed grains re-orientation and the inter-crystal changes 

conform to the higher value of the relative contraction after the break (Z = 17.6%) of the bare Ti. The 

surface around the necking zone of the coated samples (Figure 4 b and c) looked flatter because of the 

blocked movements of the crystal lattices by the hard uppermost film and the close interlocking between 
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their surfaces. Near to the raptured zone, the nitride and oxynitride coatings showed a similar way of 

cross-section fracturing with respect to the direction of the tensile axis of the PVD films without forming 

areas with missing parts of the coating. It is clear that the critical load of fracture of the TiN coating is 

higher than that of the Ti foil. When increasing the applied load after this moment the Ti was being 

deformed which lead to local contractions mainly in depth than in width (Z = 3.8 %) of the TiN coated 

sample. The oxidation formed more favorable gains’ boundary zones for plastic deformation of the 

TiN/TiO2 coating. This fact is evidenced by the increased value of the relative contraction after the break 

(Z = 6.1 %) suggesting higher plasticity of the coating and more brittle substrate behavior probably 

because of the higher N diffusion in depth due to the longer deposition process contributing to the very 

good adhesion. A modern approach evaluating and analyzing the mechanical behavior by thermographic 

analysis was applied during the uniaxial tensile test. 

 

 ×200 ×860 

B
a
re

 T
i 

  

T
iN

 c
o
a
te

d
 

  

T
iN

/T
iO
₂ 

co
a
te

d
 

  

Figure 4. SEM micrographs of the fractures areas after the tensile test at different magnifications. 

 

The thermographic images captured in the beginning (elastic region) and at the end (plastic region 

and necking area) of the tensile tests of each sample (bare Ti, ТiN, and TiN/TiO2 coated) аre shown in 

Figure 5. The highest was the emitted temperature (27.8 °C) from the bare Ti samples while the lowest 

one (25.4 °C) was registered for the TiN coated specimen in the elastic area. This fact suggests a 

hindered heat transfer of the TiN coating and its low plasticity. The emitted temperature in the elastic 

area from the TiN/TiO2 coated sample was equal to 26.2 °C implying the enhanced heat transfer and 
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plasticity as opposed to the TiN coated specimen. All tested samples demonstrated the highest values of 

emitted temperatures in their elastic regions. After moving into the plastic region, the temperature 

gradually decreased and that behavior differed from that established for steels. Additionally, the necking 

zones in all samples occurred in the colder areas of the samples, not in the hotter ones. 
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Figure 5. Thermographic images captured during the tensile tests of the bare and coated samples. 
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4. Conclusions 

The deposition of coatings on Ti foil allows for determining different mechanical characteristics of 

coated systems by using uniaxial tensile test. The method proves to be sensitive to the changes occurring 

in the mechanical properties of the arc deposited TiN after the glow discharge oxidation when compared 

to single nitride coating.  The decrease in the elastic modulus values after oxidation of the arc deposited 

TiN coating is an important desirable effect that brings the mechanical properties of the tested system 

closer to that of the cortical bone. Simultaneously, the plasticity of the TiN/TiO2 coated sample increases 

its values with 29% compared to the TiN one at the expense of a small decrease in the hardness and 

tensile stress at a maximum load. The demonstrated high adhesion strength of the coated systems would 

prevent the intense fragmentation and separation of parts of the surface film that could trigger 

inflammatory processes in vivo. The observed differences in the values of the mechanical properties 

determined by the nanoindentation and tensile tests are dictated by the differences in the tested volumes. 

The tensile tests results provide an overall outline of the mechanical properties of the tested systems 

while the nano-hardness results describe the local elastic and plastic behavior of a certain surface area. 

Тhe thermal analysis proves that the coated samples show lower thermal conductivity, which is a very 

important fact for the performance of an endosseous dental implant for example. 

Additional experiments for determining the changes in the chemical and phase compositions of the 

coated systems will be needed to explain the differences in the mechanical properties of the tested 

materials.   
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