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                             Abstract. In the present paper the authors focus on dynamic response of A36 steel plate supported 

by a simple subgrade, under a moving iron load. The fourth order partial differential equations 

governing the dynamic behavior of the plate were transformed into their algebraic forms using 

differential transform method. The new set of algebraic equations were solved analytically. 

Computer software - Maple was deployed to plot the three-dimensional (3D) graphs. The results 

obtained revealed that the absolute value of the deflection of the steel was very high when the 

mass of the iron load is highest at constant velocity. Also, the A36 steel plate deflected more under 

a moving iron load especially with a high velocity and less foundation rigidity.  
 

1. Introduction  

A36 steel, usually referred to as ASTM A36 steel, is a common structural steel whose standard was 

established by the ASTM International [1]. ASTM A36 steel is one of the most widely used low carbon 

structural steels. Its plate can be used for general structural purposes. For instance, it can be welded in the 

construction of building and bridges. It is equivalent to EN S275 steel plate [1]. It exhibits good strength 

and can be galvanized to provide increased corrosion resistance. A36 plate application depends on the 

thickness and corrosion resistance of the alloy.  Some of the products manufactured using A36 structural 

steel plate are: Buildings, Cabinets, Pipe and tubing [2]. Apart from the fact it can be securely welded, it is 

easy to machine and fabricate. It can have fabricated into different forms including Plates, Structural 

Shapes, Bars, Sheets, Girders, Angle iron, T iron. Some properties of A36 steel are represented in table 

1[2,3]. During production, sometimes loads made of iron traverses through the ASTM A36 steel plate 

which causes vibration of the plate. The traversed load is assumed to uniformly partially distribute [4]. 

Differential transform method (DTM) is a semi analytical method. It involves the transformation of 

differential equations to their algebraic forms. DTM is relatively simple to apply compared to other 

methods used in solving such problem, which computationally intensive.                                        

Many researchers [5,6,7,8,9] have worked in this area. Some of the authors include: Y. Kumar [10], who 

studied the free vibration analysis of isotropic rectangular plates on Winkler foundation using differential 

transform method. He obtained the Characteristic equations in the form of infinite series and solved them 

numerically using a computer program developed in C++ to obtain natural frequencies. The results 

obtained show reliability and fast convergence of the method for rectangular plates. 

Agarana et al also studied application of differential transform method to vibration analysis of damped 

railway bridge on Pasternak foundation under moving train. He applied differential transform method to 

analysis the vibration of orthotropic damped rectangular railway bridge supported by Pasternak foundation. 

The results obtained revealed that both the foundation modulus and damping have effects on the deflection 

of the railway bridges which was modelled as the plate in this work [11,12,13] 

None of the authors have considered specifically the dynamic response of A36 steel plate, supported by a 

subgrade under a moving iron load using DTM, without the effect of damping and considering simple 

foundation. This is what this paper attempt to address, because of the importance of this type of steel. 
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Table 1: Mechanical properties and their values for A36 steel plate. 

Mechanical Properties of A36 steel plate                       Values 

Density  7,800 kg/m3 (0.28 lb/cu in). 

Young's modulus   200 GPa (29,000,000 psi) 

Poisson's ratio   0.26 

shear modulus  75 GPa (10,900,000 psi). 

minimum yield strength (thickness of plate <8in)  36,000 psi (250,000 kPa)  

ultimate tensile strength (thickness of plate <8in) 58,000–80,000 psi (400–550 MPa) 

minimum yield strength (thickness of plate >8in) 32,000 psi (220 MPa) 

ultimate tensile strength (thickness of plate >8in) 58,000–80,000 psi (400–550 MPa) 

 

2. Formulation of Problem 

Following Agarana et al, the equation governing the vibration of damped simply supported 

orthotropic plate resting on Pasternak foundation under a moving load can be written as [14,15]: 

4 4 4 2 2 2

1 2 3 14 2 2 4 2 2 2
2 2 0                        (1)

w w w w w w w
Kw m m G

x x y y t t x y
   

       
+ + + + + + + = 

        
 

Where, 

w = w(x,y,t) is the deflection of the plate at the point (x, y), m is the mass density per unit area, 

K, G1 is the foundation stiffness, t is the time in seconds, E is the Young’s modulus, v is the  

velocity, H is the thickness of plate,  is the viscous damping coefficient, 1 is the flexural rigidity 

in the x direction, 
2 is the flexural rigidity in the y direction, and 3 is the effective torsional 

rigidity. For this paper, the simplest form of foundation was considered. The effect of damping 

was neglected also. Therefore equation (1) becomes: 

 
4 4 4 2

1 2 34 2 2 4 2
2 0                                                                  (2)

w w w w
Kw m

x x y y t
  

   
+ + + + =

    
 

 

With initial and boundary conditions [16]: 

Following Kumar, the deflection function w, can be written as [17] 

 

sin( ),  - m +                                                                                                 (3)w w my=    

The last term in equation (2), 
2

2

w
m

t




, is a force. It can be written as w . 

Where  is the frequency parameter, given as: 
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3

12(1 )

Eh

−
 =                                                                                                                        (4)                

                                                                                                                    

Substituting equation (3) into (2) leads to; 

 
4 2

2 2 2 4 4

1 2 34 2
2 ( ) 0

d w d w
m m k w

dx dx
    − −  − =                                                                     (5) 

 

3. Problem Solution 

 

Equation (5) can be solved using differential transform method (DTM). Before solving the 

equation, let the following values of the parameters be substituted. 

 

Table 2: Mechanical properties of A36 steel and parameters values 

 

Mechanical properties of A36 steel Notation Value 

Young modulus E 200 

Shear modulus G 75 

Flexural rigidity D 0.0021 

Density 
 

7800 

Poisson ratio v 0.26 

Frequency parameter 
 

21.16 

mass m 5 

Foundation stiffness k 100 

Height of the plate h 0.05 

Torsional constant J 36 

 

Substituting specific A36 steel plate values for flexural rigidity in x and y directions, effective 

torsional rigidity, mass density per unit area, and the foundation stiffness, into equation (5) after 

dividing by 4  gives: 

 
4 2

4 2 2 2 4

1 2 34 2
/ 2 / ( ) 0

d w d w
m m k w

dx dx
    − −  − =                                                                     (6) 

 

4 2
4

1 2 34 2
/180 0.0015 (279841 100) 0

d w d w
w

dx dx
  − − − =                                                              (7) 

 

Following the works of Kumar and Agarana; 
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4 2

4 2

32

4 4

1 1

4 2

                                                                                                                       (8)

2798410.0015
,

/180 /180

[ ]         

d w d w
a bw

dx dx

where

a b

DT w aw bw



 

= +

= =

= +                                                                                                              (9)

( 1)( 2)( 3)( 4) ( 4) ( 1)( 2) ( 2) ( )

1
( 4) [ ( 1)(

( 1)( 2)( 3)( 4)

k k k k Y k a k k Y k bY k

Y k a k
k k k k

 + + + + + = + + + +

 + = +
+ + + +

2) ( 2) ( )]                                  (10)k Y k bY k+ + +

 

With initial conditions;  

 

Y(0) = 0, Y(1) = -1, Y(2) = 1, Y(3) = -2 

 

For k = 0: 

1
(4) [2 ]

24
Y a=                                                                                                                        (11) 

 

For k= 1: 

1
(5) [ 12 ]

120
Y a b= − −                                                                                                          (12) 

 

For k = 2: 

21
(6) [ ]

360
Y a b= +                                                                                                              (13) 

 

For k = 3: 

(7) [ 12 ]
6

a
Y a b= − −                                                                                                 (14)                                                                                                                 

and so on. 

 

 

Generally, for k+4 = n, (k = 0,1,2,3…) we have 
 

212 12
( ) , , , ,...

12 120 360 6

a a b a b a b
Y n a

− − + − − 
=  

 
                                                                       (15) 

 

It was assumed in this study that the flexural rigidity in both the x and y directions of the plates 

have the same value of 0.0021. It was also assumed that the plate is a square with length of 4 units. 

Therefore, the values of a and b can be evaluated as follows: 
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4

1

3

4

1

0.0015
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/180

a

b









= =
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Therefore equation (15) becomes: 

 

( ) 131250, 157500,6890625000, 4961250000000,...                                (16)Y n = − −
 

 Following Edeki’s work [9], it leads to: 

 

0

2

2 3 4

( ) ( )                                                                                              (17)

( ) (0) (1) (2) ...

0 131250 157500 6890625000 4961250000000 ...      

n n

n
y x Y n x

y x Y Y x Y x

x x x x

=

=
=

 = + + +

= + − + − +



2 3 4

          (18)

( ) 0 131250 157500 6890625000 4961250000000 ...         (19)w t t t t t = + − + − +

 

 

For t = 0,1,2,3,... respectively gives; 

 
(0) 0

(1) 4954359401000

(2) 79324875630000

(3) 401861250000000

w

w

w

w

=

= −

= −

= −

 

 

For velocity, equation (19) is differentiated to give: 

 
/ 2 3( ) 0 131250 315000 20671875000 19845000000000 ...         (20)w t t t t= + − + − +  

 

For t = 0,1,2,3,..., respectively gives; 

 

 
 

For acceleration, equation (20) is differentiated to give: 

 
/ / 2( ) 0 131250 315000 41343750000 59535000000000 ...         (21)w t t t= + − + − +  

 

For t = 0,1,2,3,..., respectively gives; 
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/ /

/ /

/ /

/ /

(0) 183750

(1) 59493656430000

(2) 238222687300000

(3) 535690968900000

w

w

w

w

= −

= −

= −

= −

 

 

The above shows the truncated values of the deflection, velocity of the deflection and 

acceleration of the deflection after the fourth terms. 

 
4. RESULT DISCUSSIONS 

 

Putting the assumptions into consideration, the results obtained show that the absolute values of 

the deflection, the velocity of the deflection and the acceleration of the deflection increase as time 

increases, within the range of time considered (t = 0,1,2, 3). Equations (19), (20) and (21) show 

the huge dynamic response after time zero. The deflection, the velocity of the deflection and the 

acceleration of the deflection are well pronounced. However, comparing the increase in angular 

velocity with the increase in angular acceleration at any given time, the increase in angular 

acceleration is more than the increase in angular velocity. Similarly comparing values of the 

deflection, velocity of the deflection and acceleration of the deflection, at a time, shows that it is 

most pronounced in the acceleration, followed by the velocity, then the deflection itself. The 

reason for the huge deflection and its rate with time can be attributed to the iron load and the type 

of plate, the A36 steel plate, bearing in mind that damping was neglected in this study. 

 

5. CONCLUSIONS 

 

A36 steel plate’s dynamic response to uniform partially distributed moving iron load was 

modelled and analyzed using differential transform method. The results obtained are put in table 

form and agree with the ones in literature. Deductions are made from the results. The differential 

transformation method is an effective method for solving the type of differential equation problem 

being considered in this paper. It is also easy to handle, because the differential equations are 

transformed into their algebraic form. The mechanical properties of A36 steel plates have effects 

on the dynamics of the system.  
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