
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

ICESW IOP Publishing

IOP Conf. Series: Materials Science and Engineering 413 (2018) 012058 doi:10.1088/1757-899X/413/1/012058

 
Thermal Optimization of Heat Sink for Inverter Applications 
 

F. Onoroh1, M. Ogbonnaya1, J. L. Chukuneke2, C. B. Echeta2 

1Department of Mechanical Engineering, University of Lagos, Akoka, Yaba, Lagos state, 
Nigeria 
2Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Anambra state, 
Nigeria 
E-mail: onofrankus@yahoo.com 
 
Abstract. Power inverters enable efficient conversion of DC voltage and current to AC voltage and 
current and are intermediate device in renewable energy technology application especially solar, wind 
and thermoelectric energy. The key technologies behind power inverters switching operation are the 
semiconductor devices such as the IRF 3205 MOSFET chip. During operation the switches dissipate heat 
and if the dissipated heat is not properly managed, thermally induced failure may occur. The research 
work involves generation of a heat sink model and its optimization for a 24VDC/2.5K.V.A inverter. The 
thermal resistance, fval, of the optimized heat sink was found to be equal to 0.0345 oC/W which is less 
than the thermal resistance of the heat sink to ambient of the IRF 3205 MOSFET switch of 0.5063 oC/W. 
The thermal management of the power inverter package yields experimental and modeled package 
temperatures of 34.7oC and 36.5oC respectively. The optimized heat sink using the model created leads 
to reduction in size, weight and reliable operation of the power inverter. 
Keywords. Power inverter; Renewable energy; Reliability; Heat Sink; Thermal resistance;  MOSFET 
chip; Failure. 
 

 
1.Introduction

Power inverter involves the conversion of electric power from direct voltage and current levels to alternating 
voltage and current levels. Power electronics is now a major part of power engineering; at least 25% of all power 
generated passes through some form of electronic system before being utilized [1]. 
 
In the inverter, DC power from the battery bank is inverted to AC power via a set of solid state switches – 
MOSFETs or IGBTs that essentially flip the DC power back and forth creating AC power [2][3]. In the course of 
the inversion, electrical power is dissipated as thermal energy, and reliability of the power inverter can be 
compromised if accurate thermal management is not put in place [4]. 
 
Problems associated with the thermal dissipation and heat transfer through power inverters is one of the most 
urgent issues that requires significant attention in order to produce efficient and reliable electrical energy 
conversion systems [5]. 

In a typical MOSFET base power inverter, power is dissipated as heat. To avoid unacceptable temperature 
rises to prevent thermal problems, improvements in cooling methods are obligatory [6]. The heat generated as 
a result of these losses must be conducted away from the power devices and into the environment using a heat 
sink. If an appropriate thermal system is not used, elevated temperatures can adversely affect electronic device 
operation; power handling capability, reliability and even risk of electrical fire outbreak. It has been showed 
that more than 55% of the electronic failures are caused by heat [7]. 

2.Thermal Dissipation in a Power Inverter 
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Heat energy can be transferred from one place to another by conduction, convection and radiation. These 
phenomena may take place in a given system singly or simultaneously.  However, the majority of heat generated 
by the IRF 3205 MOSFET switches in a power inverter is transported via conduction to the bottom of the 
switches. Other mechanisms are seldom sufficient to cause any noticeable change [8][9]. 
As a result of heat dissipation during the switching operation of the IRF3205 MOSFET chips, thermal 
management system must be optimized to attain the highest performance of the inverter. However in other to 
optimize the overall heat sink, thermal performance is usually maximized and the weight satisfying constraints 
are minimized. 

The main components that make the power module stack are the die, the solder and the base-plate. The IRF 3205 
MOSFET chip is fastened to the heat sink with the aid of screw. In this configuration, the heat generated in the 
die is conducted down through the stack to the base-plate which is then cooled by the heat sink via air circulation. 
Extended surface is used specially to enhance the heat transfer rate between a solid and an adjoining fluid. The 
heat sink is a high thermal mass attached to the base-plate enabling it to help reduce the die temperature during 
operation [10][11]. 
Variations to the heat sink geometry and material allow the heat sink to be optimized. An understanding of the 
way in which the material of the heat sink affects its performance is required to inform about cost and 
performance as given by the coefficient of heat penetration, (CHP).  

Heat sink with a higher CHP reduces the die temperature more as the material have a low thermal resistance 
and high thermal capacitance. The CHP describes how much thermal capacity is available within the early 
period of the heat flow and is obtained directly from the material properties as: 

                                                                          CHP = �kρC�     (1) 

Where k is the thermal conductivity of the material, W/mK,  ρ is the density of the material, kg/m3, Cp is 
specific heat capacity of the material, J/kgK.  

3.Generation of Heat Sink Model 
 
Figure 1 shows the geometry of an extruded heat sink and the associated thermal resistance network. Using the 
definitions, of the heat sink geometry as shown in figure 1, the fin spacing ratio kf is defined as [12]: 

 

  
                                              Fig. 1 Geometry of an Extruded Heat Sink 
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                                                                              k� = �(���)
	

      (2) 

Where s is the air passage width, m, b is the distance between the first and last fins, m, n is the number of fins. 
With values between zero and one, the fin spacing ratio characterizes the cross section of the heat sink available 
for air flow. The hydraulic diameter, dh, is a commonly used term when handling flow in noncircular tubes 
and channels. It can be expressed as a function of the heat sink geometry as: 

                                                                                       d
 = ��
�

      (3) 

Where A is the area of duct section perpendicular to the flow, it can be expressed as: 

 
                                                                         A =  (n − 1)s ∙ L�       (4) 
 
P is the wetted perimeter of the duct, it can be expressed as: 

 
                                                                        P =  2(n − 1)(s + L�)     (5) 
 

In the light of equation (4) and equation (5), the hydraulic diameter of the fluid channel is obtained as [13]: 

                                                                          d
 = ����
����

      (6) 

Where Lf is the fin length, m. For a given fin geometry, the total air flow through all channels creates a pressure 
drop along the heat sink length, L, into the paper which is given for laminar flow as  [14]: 

                                                                       ∆P� = 1.5 ��ρυ�
�(���)��

� V̇     (7) 

Where ρ is the density of air, υ is the kinematic viscosity of air, m2/s, V̇ is volume flow rate of air m3/s. The 
1.5 correction factor takes into account the non quadratic channel shape characterized by s ≪ L�. In the case 
of turbulent flow, the pressure drop is given as [14]:  

                                                              ∆P� =
�

����
����

ρ
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For laminar flow the Nusselt number, Nu, can be obtained as [14]: 

                                          Nu� =
�./0*346�
$�.�/�7� 8⁄ ��.*7� 8⁄ %9

:�
�;.;<>>

? 46�
 7

46�
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With  

                                                                       X = �
��EF@B

      (10) 

                                                                         Pr = GIμ

J
      (11) 

μ is the dynamic viscosity, kg/ms. 
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While the Nusselt number, Nu, for Turbulent flow is [14]: 

                  Nu� = 3M('.*, -� EF��./�)�9:�(EF��''')@B

����.*�[M('.*, -� EF��./�)�]:�  $@B� 8⁄ ��%O��Q
R�
� S

� 8⁄
T
       (12) 

Therefore, the heat transfer coefficient is obtained from the Nusselt number as [15][[16]: 

                                                                              hU = WYJ
��

      (13) 

The Reynolds number, Re, of the fluid can be expressed as a function of the heat sink geometry is as follows: 

                                                                              Z\ = ^_`a
b

      (14) 

Using the concept of kinematic viscosity, the Reynolds number can be expressed as: 

                                                                                      Z\ = _`a
υ

                 (15) 

From the definition of the hydraulic diameter of equation (3), equation (15) can be expressed as: 

                                                                                 Z\ = �ċ
υ@

      (16) 

Substituting equation (5) into equation (16), the Reynolds number as a function of the heat sink profile of 
figure 1 is then obtained as: 

                                                                         Z\ = �ċ
υ(���)(����)     (17) 

If the Reynold’s number, Re, is less than 2300, the flow is laminar, otherwise it is turbulent. All properties of 
air are evaluated at the mean film temperature, Tf, as [17][18]: 

 

                                                                            T� = �f��∞

�
      (18) 

The significant thermal performance index for efficient heat dissipation is the thermal resistance, Rt,hs, of the 
heat sink, which comprises the thermal resistance of the heat sink base, R4,	, thermal resistance between fin 
surface and the air channel, R4,�6, the thermal resistance of the fin, R4,�j�, as shown in figure 1, for an air 
channel. 

The resultant thermal resistance of the heat sink by application of series and parallel combination of resistance 
yields the thermal resistance of the heat sink as: 

                                          R4,
� = �
�

l
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Under operating conditions, the thermal resistance between the IRF 3205 MOSFET chip/heat sink assembly, 
is defined as: 
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                                                            R4,�6 = �|��∞

@R}q~
− $R4,�U + R4,U�%    (20) 

For effective heat dissipation, the necessary condition to be satisfied is: 

                                                                            R4,
� ≤ R4,�6     (21) 

The convective heat transfer is obtained from the relation: 

                                                                              Q̇ = �|���

E�,��
      (22) 

Where d is the heat sink base thickness, m, A�6 is the effective convective surface area of air channel, m2, kh� 
is the thermal conductivity of heat sink material, W/mK, L is the heat sink length, m, Lf is the fin height, m, δ 
is the fin thickness, m, T� is the junction temperature, oC, T∞ is the ambient temperature, oC, TU is the case 
temperature, oC, P��6� is the maximum dissipated power, W, R4,�U is the junction to case thermal resistance, 
oC/W, R4,U� is the case to heat sink thermal resistance, oC/W. 

4.Results and Discussion 
 
The critical thermal performance parameters of the generated heat sink model are fin spacing, fin thickness, 
length of fin, length of heat sink and number of fins. The heat sink model is simulated in MATLAB, to show 
the influence of each parameter on the heat sink performance. The calculation procedure is as shown in the 
flow diagram of figure 2. 

 
 
 

                          

                                                   Fig. 2 Heat Sink Model Simulation Flow Diagram 

 
4.1 Variation of Thermal Resistance with Fin Spacing and Number of Fins 

 



6

1234567890‘’“”

ICESW IOP Publishing

IOP Conf. Series: Materials Science and Engineering 413 (2018) 012058 doi:10.1088/1757-899X/413/1/012058 
 
Figure 3 shows the 3-D and 2-D plot of thermal resistance with fin spacing and number of fins. From the plots 
increasing the fin spacing and number of fins, results in a decrease in the thermal resistance of the heat sink, 
and thus an increase in heat dissipation capability of the heat sink. This is as expected as increasing fin spacing 
leads to an increase in effective heat transfer area for heat transfer to take place. 

 

  
Fig. 3 Thermal Resistance Curves at various Fins spacing and number of Fins 

             
However, for a constant heat sink width, increasing the number of fins means a corresponding decrease in the 
fin spacing/or thickness of the fin. Thus, the fin spacing ratio characterizes the cross section of the heat sink 
available for air flow.  

4.2 Variation of Thermal Resistance with Length of Fin and number of Fins 
 
Figure 4 shows the 3-D and 2-D plot of thermal resistance with length of fins and number of fins. Clearly, there 
is a progressive decrease in thermal resistance with an increase in length of fin and an increase in number of fins. 
At a large length of fin, there is an increase in hydraulic diameter of the channel which will leads to a decrease 
in convective heat transfer coefficient. However there is a corresponding increase in heat transfer surface area 
which leads to reduction in the heat sink thermal resistance.  
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Fig. 4 Thermal Resistance Curves at various Length of Fin and number of Fins 
 
Also at large numbers of fins, changes in length of fins have little influence on the thermal resistance of the 
heat sink. It must be pointed out that as the length of fin increases, and at large number of fins, there is a 
reduced heat exchange at the fin top, due to the temperature of the fin top approaching the ambient temperature. 

4.3 Variation of Thermal Resistance with Length of Heat Sink and number of Fins 
 
Figure 5 shows the 3-D and 2-D plot of thermal resistance with length of heat sink and number of fins. Clearly, 
low thermal resistance is achieved with a corresponding increase in length of heat sink and number of fins. 
 

  
Fig. 5 Thermal Resistance Curves at various Length of heat sink and number of fins 

 
The decrease in thermal resistance is due to the increase in the total fin surface area, and a corresponding 
increase in the average convective heat transfer coefficient. However, there would be an increase in pressure 
drop in the channel, which in turn leads to an increase in pumping power.  
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4.4 Variation of Thermal Resistance with Fin Thickness and number of Fins 
Figure 6 shows the 3-D and 2-D plot of thermal resistance with fin thickness and number of fins. There is a 
gradual decrease in thermal resistance with an increase in fin thickness at constant number of fin. 
 

  
Fig. 6 Thermal Resistance Curves at various Fin Thickness and number of Fins 

 

An increase in fin thickness allows heat flow through the whole length of the fin. A small fin thickness will 
not allow equal distribution of heat over the fin surface. This reduces the effective fin surface area, makes a 
part of the fin useless, and has associated manufacturing constraints.  For a constant heat sink width, a 
compromise has to be made, as an increase in fin spacing will lead to corresponding decrease in fin thickness.  

4.5 Variation of Thermal Resistance with Cross Sectional area and number of Fins 
 
Figure 7 shows the 3-D and 2-D plot of thermal resistance with cross sectional area and number of fins. There 
is a gradual decrease in thermal resistance with an increase in cross sectional area at constant number of fin. 
 

  
Fig. 7 Thermal Resistance with Cross Sectional Area and number of Fins 
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However, for each cross sectional area, there is an optimum number of fins beyond which the thermal 
resistance increases. Thus, small number of fins is desired as the cross sectional area increases. 

The presented analysis shows that the performance of the heat sink can be maximized by selecting the correct 
profile. Due to the large number of variables, and the desire to minimize cost, weight and volume of heat sink, 
the least material approach was adopted. 

In the optimization, the non dimensional parameters that are function of the independent variables are passed 
as global variables to the objective function. The resulting optimized heat sink variables are; fin spacing equal 
to 0.005m, fin length equal to 0.02m, number of fins equal to 10, fin thickness equal to 0.003m, heat sink 
length equal to 0.1m, heat sink base thickness equal to 0.004m, from which width of the heat sink equal to 
0.075m, fin spacing ratio of  0.6667. The thermal resistance, fval, is equal to 0.0345 oC/W which is less than 
the thermal resistance of sink to ambient of the MOSFET Switch of 0.5063 oC/W, which clearly satisfy the 
heat sink model. The thermal management of the power inverter package yields experimental and modeled 
package temperatures of  34.7oC and 36.5oC respectively at air flow rate of 0.03065m3/s. 

5. Conclusion  
 
Power inverters are essentially for supplying energy for today’s society in a more efficient, sustainable and 

controllable manner. Thermally induced failures modes are the main causes of power inverter reliability issues. 
Thus the principal parameters that influence the performance of the heat sink are optimized for effective 
dissipation of the power losses in the inverter. In optimization of the heat sink, thermal performance is maximized 
and the weight satisfying constraint is minimized. Result of an actual test at 1500W corresponding to 75% of the 
inverter rating yields an experimental and modeled package temperatures of 34.7oC and 36.5oC respectively, 
recorded with the aid of MTM–380SD 3 Channels Temperature Monitor with SD Card Data logger, which shows 
that the optimized heat sink model works well and the inverter can  safely and reliably be operated. 
 
 
 
Nomenclature--------------------------------------------------------------------------------------------------------------- 
 
A : Cross sectional area of heat sink, m2 
Ab : Base area of heat sink, m2 
Afa : Convective surface area of air channel, m 
B : Distance between first and last fins 
Cp : Specific heat capacity, J/kgK 
D : Heat sink base thickness, m 
Dh : Hydraulic diameter, m 
hc : Convective heat transfer coefficient,W/m2K 
k : Thermal conductivity, W/mK 
kal : Thermal conductivity of heat sink material, W/mK 
L : Heat sink length, m 
Lf : Length of fin, m 
n : Number of fins 
Nu : Nusselt number 
V̇ : Volume flow rate, m3/s 
v :Kinematic viscosity, m2/s 
P : Wetted perimeter, m 
Pdmax : Maximum dissipated power,W 
Pr : Prandtl’s number 
Q̇  : Convective heat transfer, W 
Re : Reynold’s number 
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Rt,hs : Thermal resistance of heat sink, oC/W 
Rt,sa : Thermal resistance of sink to ambient, oC/W 
Rt,jc :Thermal resistance of junction to case, oC/W 
Rt,cs : Thermal resistance of case to heat sink, oC/W 
S : Fin spacing, m 
Tb : Base temperature, oC 
Tc :Case temperature, oC 
T∞  :Ambient temperature, oC 
Tf : Film temperature, oC 
Tj : Junction temperature, oC 
U : Velocity, m/s 
μ : Dynamic viscosity, kg/ms 
δ : Fin thickness, m 
ρ : Density, kg/m3 
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