
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

ICESW IOP Publishing

IOP Conf. Series: Materials Science and Engineering 413 (2018) 012063 doi:10.1088/1757-899X/413/1/012063

Graphical Representations of Experimental and ANN 

Predicted Data for Mechanical and Electrical Properties of 

AlSiC Composite Prepared by Stir Casting Method 
 

Philip O. Babalola1∗, Christian A. Bolu1, Anthony O. Inegbenebor1, Oluseun 

Kilanko1  

 

Department of Mechanical Engineering, College of Engineering, Covenant 

University, Ota, Nigeria 

E-mail address: phillip.babalola@covenantuniversity.edu.ng 

 
Abstract. Artificial Neural network is a field of man-made intelligence that is able to undertake 

design prediction, mechanical property forecast, and process selection. In this paper, 

Aluminium Silicon Carbide composite was developed by reinforcing aluminium metal with 

silicon carbide powder using stir casting method. The produced aluminium matrix composites 

(AMC)were subjected to tensile, hardness and electrical tests to obtain tensile extension (mm), 

load (N), modulus (N/mm^2), yield strength (MPa), hardness (HV), ultimate tensile strength 

(MPa), tenacity at fracture (gf/tex), time at fracture (s), hardness (HV), conductivity(MΩ/m), 

and tensile stress (MPa) data. Artificial Neural Network (ANN) was then used to train, test, 

and validate the obtained experimental data and then predict new set of data. The experimental 

and ANN predicted data were represented using graphical illustrations. The results showed 

that ANN could be used to replace rigorous, costly and time consuming experimental exercise 

with minimal loss in accuracy. 
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properties, electrical properties, stir casting 

 

   
1. Introduction 

 

Aluminium metal is the most severely used non-ferrous metal in our world today and it is only second 

to steel, when it comes to automobile body frame [1], with 5xxx and 6xxx series on the lead. Light 

weight, high strength, and high resistance to corrosion in an aggressive environment make aluminium 

a suitable material for use in conventional and non-conventional applications. Aluminium also responds 

readily to strengthening mechanisms. However, aluminium does not perform very well in high 

temperature applications due to its low melting temperature. It also has very little resistance to abrasive 

wear because of small hardness value [2]. Improved mechanical properties is obtained by reinforcing 

aluminium alloy matrix with ceramic materials [3-6]. Some ceramic materials like alumina, B4C, SiC, 

Si3N4, AlN, TiC, TiB2, TiO2 and hard metals such as tungsten and titanium are used for this purpose 

[7].  The resultant aluminium matrix composites now have numerous use in reciprocating internal 

combustion engine members (cylinder liners, pistons, pushrods, cylinder blocks), rotors brake for high 

speed locomotives, transmission parts, turbocharger vanes, forks for gear shift, clutch plate, golf clubs, 

bicycles, electronic boards, and heat fins. Bringing aluminium and reinforcing material together may 

be done using processing methods such as powder metallurgy, cryomilling, vacuum infiltration, vacuum 

hot pressing, thixoforming, co-spray deposition process, compocasting, squeeze casting, centrifugal 

casting, laser alloying and stir casting methods [6, 8]. Stir casting method is used in this work due to its 

cost-effectiveness and ease of varying and monitoring of processing parameters. Many studies have 

been conducted on properties and characterization of Al/SiCp composites [9–13]. Evaluated properties 

of the composites depend on the particularly critical one for the material application. Some of these 

properties are tensile, hardness, thermal conductivity, electrical conductivity, fatigue, creep, wear rate 

and so on. 

 

However, the same properties are now being predicted using Artificial Neural Network (ANN) method. 

Kavimani and Prakash used ANN and Taguchi method to predict wear rate properties of magnesium 

composite [14], while Rashed and Mahmoud in their work used ANN to predict the same property but 
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with aluminium composite [15]. Apart from material properties, ANN is also used in process parameters 

in surface engineering [16], machining [17] and composite. 

 

2. Materials and Methods 

 

In this work, stir casting method was adopted to synthesize samples of AMCs using 1170Al reinforced 

with Silicon Carbide (SiC) particulates of 3 µm, 9 µm, 29 µm, and 45 µm sizes respectively. The 

chemical composition of Aluminium and Silicon Carbide are presented in Table 1 and Table 2 below. 

 

Table 1 The Compositions in Percentage of Aluminium Ingot Used in the Experiment  

Fe Mg Sn Cu Zn Ti Si Pb Mn Al 

0.232 0.0027 0.007 0.0006 0.0016 0.006 0.078 0.0012 0.000 99.66 

 

Table 2 The Chemical Composition in Percentage of Silicon Carbide 

   

Si Al Fe C SiO2 Magnetic Iron SiC 

0.80 0.30 0.20 0.50 0.60 0.04 97.6 

 

The liquid metallurgy method (stir casting technique) was used to formulate AMC. An oil-fired tilting 

furnace was used to melt measured mass of 1170Al to 750 °C inside a graphite crucible. A K-type 

thermocouple was used to monitor the temperature of the melt to avoid overheating and energy wastage. 

A mould preheated to 450 °C was used to receive the melt where it was mixed with the help of an 

impeller to form a fine vortex. SiC particles heated to temperature of 1100 °C was then introduced into 

the melt simultaneously with mechanical stirring at 500rpm for about 5mins. Mixing occurs when the 

slurry is at semisolid form.  

The melt behaves as a solid when no stress is involved but flows like a liquid when pressure is applied-

this is thixotropic property. Uniform dispersion is produced by introducing particles when cooling of 

the melt is combined with rigorous agitation. The agitation helped in breaking the liquid-solid mixture 

by break down the dendritic structure. The AMCs having different particle sizes (3 μm, 9 μm, 29 μm 

and 45 μm) and each size with different weight percentage (2.5, 5.0, 7.5 and10 wt %) of SiC were 

fabricated by the same procedure. 

 

2.1 Tensile test 

 

All specimens produced through stir casting method had circular cross-section with dimensions of 110 

mm Ꝋ and 30 mm length. Five tensile specimen with dimensions of 5 mm × 10 mm with a gauge length 

of 25 mm were machined out and tested in Universal Testing Machine (Instron:Model 3369) of 30kN 

load using ASTM International E8/E8M-09 standard. Five measurements (modulus) were recorded for 

each sample and the average was calculated. 

 

2.2 Microhardness test 

 

Microhardness measurements were carried according to ASTM Standard E 384. Test machine was 

LECO 700AT with a load of 492.3 mN and a dwell time of 10 s. Surface preparation was done with 

emery papers down to 1000 mesh. Six tests were conducted for each sample and the average recorded. 

 

2.3 Electrical conductivity  

 

Specimen of each cast were cut out and milled in the machine shop for electrical conductivity testing.. 

The working voltage of 20 mV was selected in 4-point probe machine on samples with dimensions 10 

mm L × 10 mm B x 100 mm H. Keithley Instruments Model 2400 was used to generate current, voltage, 

conductivity and resistivity for each sample. 



3

1234567890‘’“”

ICESW IOP Publishing

IOP Conf. Series: Materials Science and Engineering 413 (2018) 012063 doi:10.1088/1757-899X/413/1/012063

 

2.4 ANN predicted data 

 

ANN was used for modelling and forecasting tensile, electrical conductivity and micro-hardness 

properties. ANN architecture as shown in Figure 1 was employed to train, test and validate the measured 

data and then generate new forecasted data. Figure 1 consists of number of joints, arranged in layers 

that are identified as output layer, hidden layer, and input layer. Iterative computations are done viz-a-

viz input layers through network structure depicted by the hidden layers until it arrives at the output 

layers. The input is a 3x17 matrix, representing 17 samples of 3 elements (see Table 3). Three input 

elements are percentage weight of aluminium, percentage weight of SiC and size of SiC particle. The 

output (target) is a 11x17 matrix, representing 17 samples of 11 elements (see Table 4). The eleven 

output elements are microhardness, yield strength, tensile extension, modulus, ultimate tensile strength, 

tensile stress, time at fracture (break), load at maximum extension, tenacity, electrical resistivity and 

conductivity. Training and simulation steps used exactly 70% of the data, validation steps used 15% of 

the data, while remaining 15% was used for testing the network. The architecture of the network can be 

represented as (3, HL, 11), where HL is the hidden layer, hence the network topology (3,15,11), used 

the trained data to understand the weights, and records the Mean Square Error (MSE) values.  

 

A dataset of experimental results was grouped into three categories: testing, training, and validation of 

the artificial neural network. The weights of all the connecting nodes is adjusted during training sessions 

until error level no longer improved. Coefficient of determination B (also called R2 coefficient) used to 

measure the effectiveness of ANN is denoted by: 

 

   𝐵 = 1 −
∑ (𝑂(𝑝 (𝑖))− 𝑂(𝑖))2𝑀

𝑖=1

∑ (𝑂(𝑖)−𝑂 )2𝑀
𝑖=1

   (1) 

 

where O(p(i)) is the ith forecasted property characteristic, O(i) is the ith experimental value, O is the 

mean value of O(i), and M is the number of test data. Good output approximation competencies of ANN 

is measured with higher B coefficients. Hence, best quality could be deduced when B is equal or greater 

than 0.9. The relationship between outputs and targets is measured by the regression R values. A close 

relationship is known by an R value of 1, while 0 denotes random relationship and from Figure 2, 

training has R value of 1.0, validation has R value of 0.96298, test has R value of 0.90984 and all has 

R value of 0.96361. It can be inferred that there is close relationship between the outputs and the targets. 

Training data were used to modify the network during training using its error, validation samples were 

used to measure network generalization and to halt training when generation no longer improve, while 

testing data have no direct effect on training and so provided an autonomous measurement of network 

evaluation during and after training (Figure 2 and Figure 3). The summary of ANN results, a pattern 

recognizing tool is indicated in Figure 4. 

 

Table 3 ANN Input Data 

S/N Al %wt. SiC %wt. SiC Size (µm) 

1 100 0 0 

2 97.5 2.5 3 x 10-6 

3 95 5            3 x 10-6 

4 92.5 7.5            3 x 10-6 

5 90 10            3 x 10-6 

6 97.5 2.5 9 x 10-6 

7 95 5            9 x 10-6 

8 92.5 7.5            9 x 10-6 

9 90 10            9 x 10-6 

10 97.5 2.5 2.9 x 10-5 

11 95 5         2.9 x 10-5 

12 92.5 7.5         2.9 x 10-5 

13 90 10         2.9 x 10-5 

14 97.5 2.5 4.5 x 10-5 
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15 95 5         4.5 x 10-5 

16 92.5 7.5         4.5 x 10-5 

17 90 10         4.5 x 10-5 

 

 

Table 4 ANN Output (Target) Data 
S/

N 

Extensio

n at 

Maximu

m 

Tensile 

Extensio

n  (mm) 

Load at 

Maximum 

Tensile 

Extension  

(N) 

Modulus 

(N/mm^2 

Yield 

Strengt

h  

(MPa) 

Ultimat

e 

Tensile 

Strengt

h  

(MPa) 

Tenacit

y at 

Fractur

e   

(gf/tex) 

Time at 

Fracture 

(Standar

d)  (sec) 

Hardne

ss (HV) 

Conductivit

y, (M/m) 

Resistivit

y, 

(µΩ-m) 

Tensile 

Stress at 

Maximu

m 

Tensile 

Extensio

n  (MPa) 

1 20.78311

8 

720.0062 402.41332

4 

40.8 61.3 845.662

9 

40.8032 19.6 70.25378 0.014234 15.17552

2 

2 10.68599

8 

353.27605

81 

1293.4288

76 

29.6 37.2 381.467

4 

21.3124 20.05 68.82136 0.01453 8.160014 

3 10.84656 419.33323 1028.5632

65 

35 53 438.427

8 

21.65 23.6 67.70123 0.014771 9.35811 

4 7.945935 314.26053

34 

1517.5921

1 

24.25 31.625 320.943

9 

15.883 24.75 64.14723 0.015589 6.76695 

5 8.676912

5 

420.84332

58 

878.92865

75 

22.25 28.25 434.305

1 

17.3 25.9 48.74027 0.020517 5.649625 

6 8.14303 688.62665

8 

1290.1191

2 

30.4 40 711.551 16.22 22.95 67.83901 0.014741 13.03994

4 

7 7.156814 374.45122

96 

888.77210

8 

16.8 24 383.527

4 

14.3 24.65 62.96254 0.015882 6.403696 

8 7.01875 498.46985 1092.8752 21.625 26.5 519.208

5 

13.975 26.05 59.82686 0.016715 10.04436

5 

9 6.402343

3 

291.13028

44 

760.35671

67 

11.667 13.867 301.748

8 

12.73333 26.2 48.96254 0.020424 4.439326

7 

10 11.06132

8 

698.09315

5 

1233.8652

2 

30.75 41.625 721.580

3 

22.075 23.55 68.63504 0.01457 13.08390

3 

11 9.46796 688.29939

6 

969.40518

2 

36 47.6 746.233

2 

18.7772 25.2 66.96015 0.014934 14.48966

2 

12 6.303333

3 

62.09007 1326.2131

6 

31.667 39.667 63.5567

9 

12.57733 33.65 65.26178 0.015323 1.14747 

13 13.49165

4 

615.04728

6 

990.41521

6 

28 42.1 756.638

4 

46.5948 34.25 56.63504 0.017657 12.17387

2 

14 12.40481

2 

503.244 580.91621

8 

22.8 33.46 610.116

7 

14.2568 23.85 67.80000 0.014749 8.624638 

15 12.6141 453.28249

75 

793.22291

75 

34.5 44.75 497.320

7 

15.1 33.45 61.58468 0.016238 9.349032

5 

16 6.746216 762.19295

4 

935.02849

6 

19.8 27.62 780.567

2 

40.42 33.65 63.45271 0.01576 13.02127

4 

17 10.78546

8 

382.01291

75 

645.46291 29.125 39.625 398.223

7 

21.52 35.2 50.27102 0.019892 6.350372

5 
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Fig. 1 ANN Architecture  

 

 
Fig. 2 ANN Output Graph for the Dataset 

 

 

 
. Fig. 3 ANN Training Graph for the Data Used 
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Fig. 4 The ANN Validation Checks, Mu and Gradient 

 

3. Results and discussion 

 

There were seventeen (17) specimens as indicated in Table 3. The first specimen contains no ceramic 

silicon carbide, whereas the remaining specimens were mixture of aluminium (97.5, 95.0, 92.5 and 90 

wt %) and silicon carbide (2.5, 5.0, 7.5 and10 wt %) as indicated in the first two columns. The third 

column showed variation of particle sizes of silicon carbide (3 μm, 9 μm, 29 μm and 45 μm). The 

seventeen specimens were characterized to obtain the eleven material properties for Al/SiCp composites 

listed in Table 4. These measured data were presented to ANN for training, validation and testing. ANN 

subsequently generated new set of predicted properties for all the seventeen specimens. 

Figures 5-15 showed graphically the measured and ANN predicted properties for tensile extension 

(mm), hardness and electrical tests to obtain tensile extension (mm), load (N), modulus (N/mm^2), yield 

strength (MPa), ultimate tensile strength (MPa), tenacity at fracture (gf/tex), time at fracture (s), 

hardness (HV), electrical conductivity(MΩ/m), electrical resistivity (µΩ-m) and tensile stress (MPa) 

respectively.  

 

 
Fig. 5 Measured and predicted tensile extension properties of AMC Composites 
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It is observed that ANN predicted data is quite successful with perfect matches seen in ten (10) out of 

eleven (11) material properties. Aside resistivity, perfect predictions were seen in tensile extension 

(mm), load (N), modulus (N/mm^2), yield strength (MPa), hardness (HV), ultimate tensile strength 

(MPa), tenacity at fracture (gf/tex), time at fracture (s), electrical conductivity(MΩ/m), and tensile stress 

(MPa) respectively.  

 

 
 

Fig. 6 Measured and predicted load of AMC Composites 

 

 

 
 

Fig. 7 Measured and predicted modulus of AMC Composites 
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Fig. 8 Measured and predicted yield strength of AMC Composites 

 

 

 
 

Fig. 9 Measured and predicted ultimate tensile strength of AMC Composites 

 

 

 
 

Fig. 10 Measured and predicted tenacity of AMC Composites 
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Fig. 11 Measured and predicted fracture time of AMC Composites 

 

 

 
Fig. 12 Measured and predicted hardness of AMC Composites 

 

 

 
 

Fig. 13 Measured and predicted conductivity of AMC Composites 
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Fig. 14 Measured and predicted resistivity of AMC Composites 

 

 

 
 

Fig. 15 Measured and predicted tensile stress of AMC Composites 

 

4. Conclusions 

 

In the present study, prediction of Al/SiCp composites with varied aluminium content, SiC content 

and silicon particle size was done. The following results were obtained: 

 

i. Artificial Neural Network (ANN) is a versatile and effective tool in forecasting composite 

properties. In an established processing route and constituent materials, the resultant composite 

material properties could be predicted by designers and process engineers, thereby saving cost in 

the process. 

ii. Forecasted tensile, electrical conductivity and hardness from ANN model were consistent and 

showed good agreement with measured results from the specimens. 

 

Funding: The authors acknowledge Covenant University (CU) and Covenant University Centre for 

Research, Innovation and Discovery (CUCRID) Ota, Nigeria for the sponsorship and provision of 

research facilities for this work. 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
es

is
ti

vi
ty

 (
µ
Ω

-m
)

AlSiC Composite Samples

Measured

Predicted

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Te
n

si
le

 S
tr

es
s 

(M
P

a)

AlSiC Composte Samples

Measured

Predicted



11

1234567890‘’“”

ICESW IOP Publishing

IOP Conf. Series: Materials Science and Engineering 413 (2018) 012063 doi:10.1088/1757-899X/413/1/012063 

References 

 

[1] Davies G. Materials for Automobile bodies. Butterworth-Heinemann, Oxford, MA 01803, 2003, 

pp. 90. 

[2] Kok M, and Ozdin K. Wear resistance of aluminium alloy and its composites reinforced by 

Al2O3    particles. Journal of Materials Processing Technology, 2007, 183: 301–309. 

[3] Prabu S.B, Karunamoorthy L., Kathiresan S., and Mohan B. Influence of stirring speed and 

stirring time on distribution of particles in cast metal matrix composite. Journal of Materials 

Processing Technology, 2006,171: 268–273. 

[4] Inegbenebor A.O., Bolu C.A., Babalola P.O., Inegbenebor A.I. and Fayomi O.S.I. Aluminum 

Silicon Carbide Particulate Metal Matrix Composite Development Via Stir Casting Processing. 

Silicon, 2016, DOI 10.1007/s12633-016-9451-7.  

[5] Inegbenebor A.O., Bolu C.A., Babalola P.O., Inegbenebor A.I. and Fayomi O.S.I. Influence of 

the Silicon Carbide Gritsize Particles on the Mechanical and Electrical Properties of Stir Casting 

Aluminum Matrix Composite Material. Silicon, 2015, DOI 10.1007/s12633-015-9305-8.  

[6] Babalola P.O, Bolu C.A, Inegbenebor A.O and Odunfa K.M. Development of Aluminium Matrix 

Composites: A review. Online International Journal of Engineering and Technology Research, 

ISSN 2346-7452; 2014, 2: 1-11.  

[7] Babalola P.O., Inegbenebor, A.O., Bolu, C.A., Inegbenebor, A.I. The Development of Molecular-

Based Materials for Electrical and Electronic Applications. JOM, 2015, 67(4): 830-833. 

[8] Luan B.F., Hansen N., Godfrey A., Wu G.H., and Liu Q. High strength Al–Al2O3p composites: 

Optimization of extrusion parameters. Materials and Design, 2011, 32:3810–3817. 

[9] Singla M., Dwivedi D.D., Singh L., and Chawla V. Development of aluminium based silicon 

carbide particulate metal matrix composite. Journal of Minerals & Materials Characterization & 

Engineering, 2009, 8(6): 455-467. 

[10] Naher S., Brabazon D., and Looney L. Examination of the semi-solid stir casting method for 

producing Al-SiC metal matrix composites. Materials Processing Research Centre, Dublin City 

University, Dublin 9, Ireland, 2012.   

[11] Mohanavel V., Rajan K., Kumar S. S., Udishkumar S., Jayasekar C. Effect of silicon carbide 

reinforcement on mechanical and physical properties of aluminium matrix composites. Materials 

Today: Proceedings, 2018, 5:2938–2944.  

[12] Alaneme K. K., Bodunrin M.O., Awe A. A. Microstructure, mechanical and fracture properties 

of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. 

Journal of King Saud University – Engineering Sciences, 2018, 30: 96-103. 

[13] Sulaiman S., Marjom Z., Ismail M.I.S, Ariffin M.K.A. and Ashrafi N. Effect of Modifier on 

Mechanical Properties of Aluminium Silicon Carbide (Al-SiC) Composites. Procedia 

Engineering, 2017, 184: 773 – 777. 

[14] Kavimani V., Prakash K.S. Tribological behaviour predictions of r-GO reinforced Mg composite 

using ANN coupled Taguchi approach. Journal of Physics and Chemistry of Solids, 2017, 110: 

409–419. 

[15] Rashed F.S. and Mahmoud T.S. Prediction of wear behaviour of A356/SiCp MMCs using neural 

networks. Tribology International, 2009, 42: 642–648. 

[16] Ali S. Hammood, Haider Mahdi. Development Artificial Neural Network Model to Study the 

Influence of Oxidation Process and Zinc-Electroplating on Fatigue Life of Gray Cast Iron. 

International Journal of Mechanical & Mechatronics Engineering, IJMME-IJENS, 2012, 

12(5):74-78.  

[17] Shandilya Pragya, Jain P.K., Jain N.K. RSM and ANN Modeling Approaches for Predicting 

Average Cutting Speed During WEDM of SiCp/6061 Al MMC. Procedia Engineering, 2013, 64: 

767 – 774. 

 

  


