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Abstract. Heat transfer in the syntactic carbon porous materials is considered. A number of 

assumptions regarding the microstructure of these materials and the corresponding mechanisms 

of heat transfer are made. Relations to estimate the effective density, heat capacity and thermal 

conductivity of the materials taking into account the radiant heat exchange between the matrix 

elements are given. The behavior of these parameters depending on the structure, properties, 

and components of syntactic porous material is analyzed.  

1. Introduction 

It is known that carbon materials have unique properties in consequence of which they are widely used 

in engineering. At present, highly porous carbon foams are of great interest [1-6, 11]. When matrix 

material of the foam consists of carbon and the hollow microspheres distributed in it, it is syntactic 

carbon foam (SCF).  

In fact, SCFs are heterogeneous systems consisting of carbon, a microsphere shell material, a 

gaseous medium in the cavity of microspheres, and gaseous or vaporous medium or a fluid 

impregnating the SCF. A distinctive feature of these materials is that SCF properties can be varied in a 

wide range by changing the porosity due to the matrix itself, proportions between binding carbon 

material and the microspheres, their dimensions, the shell material (carbon, ceramics, metal and etc.) 

the gaseous medium composition. According to what has been said the establishment of behavior 

regularities of SCF thermophysical properties is of great interest.  

2. Body text 

At first, we turn to the SCF matrix. If the properties of the microsphere shell material differ from the 

properties of the carbon, then the matrix can be considered as a porous composite. Let us suppose that 

in its control volume Vk ng microspheres with an average volume of cavities Vg are located sufficiently 

uniformly. It follows that the microporosity of the composite material will be 

g g gm n  , 

where /g g kV V   – the fraction of the microsphere cavity volume in the control volume.  
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Further denoting the fraction of microsphere shell material as 
m m kV V  , we get 

 1c c k g g mV V n       (Vc – the carbon volume in Vk). Hence the effective density of the porous 

composite material will be:  

k g g mсm    ,                                                          (1) 

where mc g m m c cn       – the effective density of the solid phase; ρg, ρm, ρc – density of the gas, 

microsphere shell material, carbon.  

Assuming that in the singled out controlled volume the initial material is three-layered 

perpendicularly to the direction of heat propagation in order to estimate the effective thermal 

conductivity λmc of the layer consisting of microsphere shell material and carbon, we get the 

dependence:  

 1 m
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Here λm, λc – the thermal conductivity coefficients of the shell material and carbon. Accordingly, the 

effective thermal conductivity coefficient  
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where λg – the thermal conductivity coefficient of the gas.  

According to the additivity principle the effective specific heat capacity of the porous composite 

material of the SCF matrix will be ( 1g k  = ):  

k g m m m c c cc n c c     ,                                                    (4) 

where /m m k   , /c c k   ; cm, cc – the specific heat capacity of the microsphere shell material, 

carbon. 

Let us further consider the material of the syntactic foam in general. We suppose that the filtration 

rate of the medium in the foam pores is small the possible heat transfer due to convection is also small. 

In addition, we shall not take into account the conductive heat transfer upon contact of the solid and 

gas (liquid) phases. As a result, the heat conductivity and radiant heat exchange between the more and 

less heated parts of the matrix are predominant in the SCF provided that the medium in the pores is 

diathermic [7 – 12]. 

The noted combination of two types of heat transfer leads to a specific behavior pattern of the SCF 

material thermal conductivity with temperature increase. In the case when the pores are filled with gas 

the thermal conductivity is small at low temperatures since the thermal resistance of the spaces 

between matrix parts is very large, the pores impede heat transfer. As the temperature T increases, the 

conductivity increases sharply (~ T
3
). At high temperatures it becomes of the same order as the 

thermal conductivity of the matrix material in this case the medium behaves like a solid body whose 

thermal conductivity is close to the average thermal conductivity λk. 

In order to take into account the mentioned peculiarities of the heat propagation in the SCF material 

we select an elementary volume in it and assume that it consists of matrix parts oriented in the 

direction of the heat flow ξ; parts located transversely to this direction and spaces between them. The 

pores filled with gas form a series circuit with thermal resistances 
31 4n n n nR d T   [7, 10], where σ 

– the Stefan-Boltzmann constant, εn – the correction for incomplete blackness of the pores, dn – the 

equivalent pore size in the direction of heat propagation, T – the surface temperature of the matrix 

parts that is close to the average temperature of the SCF material, ( )n n nm   – a pore shape factor 

that depends on the porosity mn (0 < γn < 1).  

As a result, after averaging by the elementary volume for the effective thermal conductivity 

coefficient λs, we obtain the formula:  
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  (1 )s n k n k sn n kR R R         .                                          (5) 

Here, φn – the ratio of the voids area of the cross-section to the heat flow to the total cross-sectional 

area, φsn – the ratio of the voids length along the longitudinal line to the total length of the elementary 

volume in the direction of the heat flow, 1k kR  . 

Analyzing the dependence (5) we make sure that as the temperature of the SCF material increases, 

the thermal conductivity coefficient λc increases significantly tending to the theoretical limit 

  max 1 1k n n sn        . It should be noted that formula (5) is similar to the Lob’s formula for 

cellular bodies. The first term in (5) is due to the longitudinally located matrix parts, the second – the 

remaining components of the material. 

If we consider the heat propagation in the porous body with through holes along the heat flow, then 

it is easy to see that  

   31 4s n k n k n nm m d T       ,                                        (6) 

where αk – the coefficient that takes into account the convective heat transfer.  

Another more natural situation is that heat propagation in the SCF material is modeled using the 

solid body with through holes which are located chaotically with respect to the direction of the heat 

flow ξ. In this case, in (5) 
n sn nm    the effective thermal conductivity coefficient  

    1s n k n k n n km m R m R R      .                                   (7) 

By definition the thermal diffusivity coefficient of the SCF material  

/ ( c )s s s sa   . 

Here the effective density ρs is approximately equal to  

(1 )s n km   ;                                                              (8) 

effective heat capacity 

(1 ) (1 m )s n n n n k k n k kс m с m c c       ,                                (9) 

where cn – the material heat capacity of the gaseous phase that is in the pores; /n n s   , 

/k k s    – relative densities. 

As it is known the rate of change of the material average temperature is described by the 

dependence:  
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
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where τ – time. 

In the case where /sd dT  and the gradient T  are small equation (10) is simplified: 
2

sT a T    ,                                                      (11) 

Where according to (8) – (9) 
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Further, let us suppose that along the surface ξ = 0 a heat flow of power q acts upon the selected 

elementary volume of the material. Assuming that the heat propagates in the ξ axis direction we 

estimate the heating of the material under consideration, for this we supplement the equation (11) with 

the initial and boundary conditions:  

0( 0)T T   , 0s T q      , 0( , )T T    , 

where T0 – the initial temperature of the material. 

It can be seen that the solution of problem (11), (12) will be:  

         1/2 1/22 2

0 2 / exp 4 0.5 2s s s sT T q a a F a           , 

where F – the error function. 
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3. Conclusions 

Thus, the relationships for evaluation of thermophysical properties of the specific material of the SCF 

are obtained taking into account the characteristics of the binding carbon, microsphere shells and the 

gas contained therein. The formulas for determining the thermal conductivity coefficient, specific heat 

capacity and thermal diffusivity that can be used at high temperatures are proposed. In addition, 

alternative dependencies are presented. A solution for the one-dimensional model problem on the 

heating of the SCF material which clearly illustrates the influence of thermophysical parameters on the 

temperature change of a given material over time is presented. 
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