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Abstract: According to the form-finding of the flexible cable-network antenna, a new 

form-finding analysis approach based on FEM is presented. A parametric variable and 

Co-rotational formulation are used to model antenna’s constitutive nonlinearity and 

geometrical nonlinearity, and then the FEM governing equation is established. In order to 

improve the convergence ability, the Lemke algorithm combined with the improved Newton 

method is employed to solve the governing equation. The method is applied for nonlinear 

form-finding analysis of cable-network antenna and an ideal configuration is obtained. The 

research shows that the method can also be applied for studying other similar antennas. 

1. Introduction 

Cable-network antenna can be used as UHF, microwave and millimeter wave communications satellite 

antenna. It has many advantages such as high gain, light structural mass, high stowing ability and large 

aperture application rang. According to the nonlinear characteristics of flexible cable-network antenna, 

the form-finding of cable-network antenna is a great challenge to the design of deployable 

cable-network antenna [1]. Many researchers have done a lot of work on the form-finding of 

cable-network antenna. Their research methods mainly can be divided into two categories: linear form 

finding method and nonlinear form- finding method. 

The force density method firstly given by Linkwitz [2] is the most widely used linear form-finding 

method. The basic principle of this method is to establish a force balance equation on each node of the 

cable-network and introduce the force density to transform the nonlinear equilibrium equation into a 

linear system of equations. On this basis, Morterolle [3] developed the force density method with 

iterative algorithm for the isotension design. Yang [4] proposed an optimized iterative design method 

combined with form-finding and force-finding based on the force density method. Lin [5] proposed a 

form-finding method of combing the improved fish swarm algorithm with the force density method. 

However, when solving large or irregular tension structures, the force density method is not efficient. 

The finite element method is one of the general application nonlinear form- finding methods. Xia 

[6] used the structural reset method to optimize the pretension of the cable structure and proposed an 

iterative method for the optimal design of the pre tension. However, the distribution of the pretension 

in the iterative method depends on the initial value of the pretension, and the distribution of the 

pretension is difficult to control during the iterative solution, which makes it difficult to guarantee the 

uniformity of the pretension of the cable. Li [7] proposed a method for the cable pretension 
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optimization and surface adjustment of combing genetic algorithm and finite element method 

combined. However, for large-scale cable antenna, the method suffers from several problems such as 

too many variables and convergence difficulty. The geometrical nonlinearity of cable antenna and the 

constitutive nonlinearity of cable are the difficulties of finite element calculation. Traditionally, The 

NR iteration technique is employed to solve the nonlinear finite element equations of the structure. In 

each iteration step, the tensile or compressive modulus is re-selected according to the current stress 

state of the cable. In the case of more cables, it is easy to bring instability and convergence difficulties. 

In order to improve the convergence of the finite element method to calculate the cable structure, 

many scholars have also carried on the corresponding research. Zhang [8] developed a new stable 

algorithm based on the parametric variational principle (PVP) for the geometric nonlinear analysis of 

bi modular truss and tenegrity structures. The method can improve the stability of the numerical 

calculation. Tan [9] applied PVP to the finite element analysis of cable-network antenna. He also used 

Total-Lagrangian column to describe the geometric nonlinearity of the cable net and NR iteration 

method to solve the equation. But the TL method is proved to be of poor accuracy and slow 

convergence speed in large deflection calculation [10]. NR method has local convergence property, if 

the initial configuration of the cable antenna and the initial stress are not ideal; the convergence of the 

iterative process is difficult to guarantee [11]. 

In this paper, according to the constitutive nonlinearity and geometrical nonlinearity of the flexible 

cable-network antenna, a finite element method based on parametric variational principle and 

Co-rotational formulation is used for the internal force calculation. Then the method combined with 

iterative algorithm is used for the modular antenna and the parabolic cylinder antenna’ form-finding. 

The research shows that the method has good form-finding accuracy, and can be widely applied to the 

design of the cable-network antenna. 

2. Description of the parametric variational principle 

The antenna’s cables can only sustain tension. In the presence of the initial pretension, the constitutive 

relationship can be expressed as: 
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Where E
is the tensile elastic modulus;  and  are the axial strain and axial stress. 

For the Eq. (1) to introduce a parametric variable , The formula can be expressed as follows: 
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By introducing a non-negative slack variable, the cable’s tension and compression state control 

equation can be obtained: 
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where 0  is a complementary condition, when 0, 0   ,The cable is in a non-deformed state, 

when 0, 0   ,The cable is in a compressed state, when 0, 0   ,The cable is in a stretched 

state. 

3. A uniform description of the parameter variable and CR formulation 

In this paper, the CR formulation is used to describe the geometric nonlinearity of the cable element. 

The CR formulation has a more concise column and higher computational efficiency in large 

deflection, large angle and small strain analysis. The tangent stiffness matrix of the cable element 

combined with the parametric variable and CR formula can be expressed as: 

αT L NK = K + K                                (5) 
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Where LK and NK  are linear and geometric stiffness matrix, is the element strain of current 

configuration, 0 is the initial strain caused by initial pretension. 

By assembling the unit stiffness matrix TK , parametric variable  and slack variable  . The 

governing equations of the nonlinear finite element of the cable-net structure can be obtained 

    TΔP = K Δδ                             (7) 

0


 
T

A(λ+ ε + ε ) - ν = 0

ν λ = 0, λ 0,ν 0
                          (8) 

where A is the ( )idiag E
, λ is the ( )idiag  , ε is the ( )idiag  , 0ε is the 0( )idiag  , ν is the ( )idiag  , i

is the corresponding ith cable element. Eq. (8) is a linear complementarity problem and can be solved 

by Lemke algorithm. The NR method is the most commonly used iterative method for solving Eq. (7). 

However, the NR method is locally convergent, and it would be difficult to converge when the given 

initial pretension is not near the equilibrium state of the cable. In order to relax the selection of the 

initial value, the improved NR method is used in conjunction with the linear search method [11]. 

4. Form-finding of cable-network antenna 

According to the above theory, the nonlinear finite element program was compiled on the Matlab. 

Then the program is used to the form-finding of the modular cable-network antenna shown in Fig.1. 

The model has a total of 181 nodes and 408 elements. The tensile modulus of the cable is 20GPa and 

the compressive modulus is zero. The nodes on the main radial direction of the back cable net are 

constrained.  

 

Figure.1 Structural configuration of the modular cable-network antenna 

The form-finding process is as follows： 
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Step 1: Give the initial pretension of cable network 0T . 

Step 2: Calculate cable network node coordinates (x,y,z) and cable tension T  

Step 3: Calculate the error of the front cable network node coordinates between before and after 

1

1
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
  . 

Step 4: Determine whether T , ρ and tol sastify the constraint condition, if the condition is 

satisfied, turn to the follow. Otherwise, update the initial tension 0T and coordinates of cables to 

and ( , , )x y z , then turn to step 1. 

Step 5: Output cable node coordinates and tension T, end.  

Under the above-mentioned index, the form-finding result shown in Fig. 2(a) is obtained. The 

results of the finite element method are compared with the traditional force density method. The 

internal force distribution of the front cables are shown in Fig. 2(b), it can be seen that the internal 

force of the two methods is consistent. It suggests that the calculation method adopted in this paper is 

feasible.  

         
（a）Form-finding results of cable nets           (b) Internal force of front cables 

Figure.2 Internal force distribution of form-finding results of cable-network antenna 

In order to prove the above method is also applicable to a more complex antenna. The form-finding 

design of the parabolic cylinder antenna has been carried out. Fig.3 (a) is the initial state of antenna 

with total of 4802 nodes and 11809 elements and Fig.3 (b) is the form-finding result. The result shows 

that the method can also be applied for studying other antennas. 

            
(a)Initial state of cable nets     (b)Form-finding result of cable nets 

Figure.3 Form-finding design of the parabolic cylinder antenna 
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5. Conclusion 

According to the constitutive nonlinearity and geometric nonlinearity characteristics of flexible 

cable-network antenna, the nonlinear FEM governing equation combine with the parametric 

variational principle and CR formulation is established. The Lemke algorithm combined with the 

improved Newton method is employed to solve the governing equation. The method is applied to the 

form-finding of the cable-network Antenna. Through analysis, The ideal configuration is obtained. In 

comparison with the force density method, it is proved that the method is feasible and has better 

uniformity of internal force distribution. 

Further, the method in this paper can also be applied to form-finding under the flexible boundary 

and pretension optimization of cable-network antenna. 
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