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Abstract. Draping composite reinforcement on non-developable shapes necessarily 
leads to deformations in the plane generating large shears between warp and weft. 
Energy dissipation appears since the sliding between yarns and between fibers creates 
friction effect. The theory presented here is a constitutive model describing the 
dissipative behaviour of a 2D composite woven fabric. The model is based on two 
innovative points which are the Green – Naghdi additive decomposition for anisotropic 
material and the theory of nested surfaces according with Mroz studies. Both points lead 
to define the strong non-linearity of the problem and the hysteretical behaviour during 
the unloading phase. The dissipation process driven by fibers friction is exclusively 
associated with the in-plane shear deformation mode. The model is calibrated using 
standard methods such as the Picture Frame test. This model is also discretised to be 
integrated in a finite element calculation software. 

1. Introduction 
The composite fields offer a wide range of material configuration. Depending on the applications, these 
kinds of material can be from different natures, being from different elements and get specific geometric 
and mechanical characteristics. Depending on the type of composite used, shaping can vary from simple 
and mastered processes to much more delicate processes which are still subjects to many stages of 
research and discussion. In many cases, the composite material consists of a reinforcement that gives 
most of the mechanical characteristics to the material and a matric that is injected onto the woven fabric 
to lock it. The object of this paper is then to study the dissipative behaviour of a woven fabric made by 
continuous fibre. One of the famous shaping process for composite reinforcement is the Resin Transfer 
Moulding [1], [2] which consist to shape the fabric and then inject the resin. The work in this paper will 
focus on the shaping phase where the fabric knows very large deformations and in some cases cyclical 
large deformations. Indeed, the material will undergo very high deformations to be superimposed on the 
shape of the matrix. Since the complexity of the piece’s shape is in constant evolution, it is now, not 
unusual to get large variation of shear angle for example. However, to describe the shaping phase, only 
hyper-elastic or visco-elastic model already exist [3]–[8]. But these models do not consider dissipation. 
Then, for these reasons, the aim of this paper is to write a constitutive model which is considering the 
dissipation and the hysteritical behaviour of the material considering some assumptions. Indeed, during 
a cyclic loading, it is shown in this paper that the behaviour is following high non-linearities. Moreover, 
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since the fabric is composed of fibre, it will therefore deform according to different modes (elongations 
in the direction of yarns) and the in-plane shear mode [9]–[11]. As this type of material is usually made 
of fibres that have a very high stiffness (which prevents them from lying down) so most of the energy 
dissipation is due to the in-plane shear.  Since the deformations are very high, the model presented here 
is written under large strains and considering the hypothesis that the fibres no not lengthen, the 
dissipation will be exclusively defined by a pure in-plane shear kinematics. 
To write a model taking into this energy dissipation, the additive decomposition of Green-Naghdi 
applied for an anisotropic material under large strain will be used but no demonstrate here. The use of 
this decomposition gives a certain degree of freedom since the use of the intermediate configuration is 
possible and every fundamental tensor can be defined [12], [13]. On the other hand, this decomposition 
links all these tensors to the initial configuration, so that the formulation of this constitutive model is in 
total lagrangian formalism. Working on the initial configuration is easier since every quantity are known. 
Then, the first part of this paper is about the elaboration of an elasto-plastic model based on woks already 
done [14]–[16]. It is shown that it is working well only if the load is monotone, however it does not 
describe the reality. Secondly, the hysteritical effect of the material can be approach by several method 
such as the fractional derivative. However, every works from fractional derivative are made under the 
condition of small perturbation and seems to be not very stable when the loading is negative [17]. In 
addition, it works when the unloading would be linear but for a woven fabric under large strain, the 
behaviour during an unloading phase is asymptotic. Then, the method presented here is based on the 
Mroz [18], [19] works who propose to improve a model by adding internal surfaces on it. By changing 
the evolution law of each surfaces, the model can describe high non-linearity and the asymptotic and 
hysteritical behaviour. This is the strategy used here and it is shown that with only two nested surface, 
the result can be interesting. 
Moreover, at the end of this article it is shown that all the constitutive model is only depending on only 
one variable. This is very interesting since a simple Newton-Raphson algorithm is enough to compute 
the model and find the solution. In addition, this model is only available for thick fabric. This strong 
hypothesis makes possible to simplify the study because of the in-plane stresses assumption. 
Finally, at the end of this paper, a comparison between the experimental and the use of this model is 
made to show the capacity of this constitutive description of the material. 
 
2. Model assumptions 
The model presented in this paper can be only used under certain conditions: 
 

• Traction-compression deformation modes (considered elastic) and in-plane shear (considered 
dissipative) are decoupled.  

• Stress and strain tensors are assumed to be written with generalised quantities that have already 
been integrated into the thickness of the fabric. 

• Since the carbon or glass fibres does not lengthen, the behaviour of the elongation/compression 
modes is purely elastic and does not dissipate energy. Therefore, after the first assumption, the 
dissipation process follows a kinematic of pure shear. 

• The study presented here is made at the macroscopic scale. The fabric is then considered as an 
homogeneous material. 

 
3. Kinematics of the deformations 
In this section, the set of tensors necessary to write the model is defined. The coupling between the 
Green-Naghdi and the Kroner-Lee decomposition allows decoupling the total transformation and 
deformation tensors into an elastic part and a plastic part. 

3.1. Decomposition and decoupling under large strain 
The decomposition of Green-Naghdi is a relatively common formalism in the hypothesis of small 
perturbations and in the framework of crystalline materials. After a thermodynamical analysis inspired 
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by works already done, the compatibility of this decomposition with the field of finite strain and 
anisotropic structures allows to write the formulation defined by equation 1. 

 e pE E E= +  (1) 

Coupled with the multiplicative decomposition of Kröner-Lee formulated by equation 2, this couple 
permits de define tensors in the initial configuration (Lagrangian configuration). 

 e pF F F= ⋅  (2) 

The use of such decomposition makes possible to use the method of the intermediate configuration 
involving a configuration where residual stresses and plastic strains remain figure 1. 
 

 

 

 

Figure 1. Intermediate configuration method 
and decoupling. 

 Figure 2. Kinematics of the total 
transformation. 

 
The quantities defined on the figure 1 and figure 2 are: 
 

• 𝐶𝐶0: Initial material configuration 
• 𝐶𝐶𝑟𝑟: Relaxed configuration of the material. It is the so called intermediate configuration. 
• 𝐶𝐶𝑓𝑓: Final material configuration. 
• , ,e pF F F : Respectively, the gradient of the total transformation, the gradient of the elastic 

transformation and the gradient of the plastic transformation. 
• , ,e pE E E : Respectively, the total Green-Lagrange deformation tensor, its elastic component and 

its plastic component.  
• , ,e pC C C : Respectively, the total right Cauchy-Green tensor, its elastic component and its 

plastic component. 

3.2. Description of the kinematics 
Total transformation is imposed by a test or a load as it can be seen on the figure 2. A user imposes this 
tensor and it can be described as the equation 3. 

 ( )ij i jF F G G= ⊗
 

 (3) 

iG


 and jG


are the initial warp and weft direction of the material. 
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Plastic transformation is imposed by the assumption written above. Considering the last condition, it 
follows a pure shear kinematics. Figure 3 shows two possibilities of pure shear kinematics. For a 
question of simplicity, the kinematics shown on figure 3b is chosen since it is symmetric. However, if 
the kinematics of figure 3a would have been chosen, the result would be the same since the difference 
is only a pure rotation and since the model must satisfy the principles of thermodynamics and must 
follow the principle of objectivity. 
 

 

Figure 3. Two kinematics of the plastic transformation (pure shear). 

The definition of this quantity is given by equation 4. The chosen kinematics gives a symmetrical tensor. 

 ( ) ( )1 1 2 2 1 2 2 1( ) cos sin
2 2

p p
p pij i jF F G G G G G G G G G G

γ γ   
= ⊗ = ⊗ + ⊗ + ⊗ + ⊗   

   

         

 (4) 

Considering this tensor, it is now possible to calculate pC  and pE  given by equation 5 and equation 6. 

 ( )1 2 2 12cos sin
2 2

p pt
p p pC F F I G G G G

γ γ   
= ⋅ = + ⊗ + ⊗   

   

   

 (5) 

 ( ) ( )1 2 2 1
1 1 sin
2 2 2

p
p pE C I G G G G

γ 
= − = ⊗ + ⊗ 

 

   

 (6) 

Elastic deformation tensor can be deduced using equation 1 and equation 2. Using the Green-Naghdi 
additive decomposition for anisotropic field, if follows:  

 ( )1
2

t t
e p e e pE F F F I F= ⋅ ⋅ − ⋅  (7) 

From an energetical point of view, the dual of the quantities presented above are used. Since the model 
is in total lagrangian, the tress tensor used for the elasto-plastic law described just after this section is 
Piola-Kirchhoff (PKII) written with the letter S in this paper. Its energetical strain dual is the tensor of 
Green-Lagrange E. The next section is about the elasto-plastic behaviour.  
 
4. Elasto-plastic law 
To write an elasto-plastic constitutive model, three quantities are necessary:  
 

• A potential of free energy Ψ, which leads to define the stress tensor. 
• A plasticity criterion 𝑓𝑓𝑠𝑠, directly connected to as dissipative potential D. 
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• A plastic flow law 𝜆𝜆, defined from the derivation of the dissipative potential D by its stress 
space.  

 
Moreover, some assumptions are added to write the inequality of Clausius-Duhem under large strain: 
 

• Temperature is constant during the elastic transformation 𝑇𝑇 ∶ 𝑇̇𝑇 = 0. 
• Temperature is homogeneous during the elastic transformation. 
• A single internal variable is used here, the dissipative part of the Green-Lagrange tensor.  

 
To determine the potential of free energy, it is necessary to start with the energy of the transformation 
Φ0 which is the sum of an elastic potential Ψ and a dissipative potential D as following: 
 

 0 DΦ = Ψ +  (8) 

This free energy potential leads to define the stress tensor considering the inequality of Clausius-Duhem 
under the assumption taken before: 

 : 0dS E
dt

µ
⋅ Ψ
− ≥  (9) 

In this inequality it appears: 

• The rate of total deformation  𝐸𝐸
̇
.  

• The surface density 𝜇𝜇. 

• The power per surface unit  dΨ
𝑑𝑑𝑑𝑑

. 

Using the principle of the local state and according to the additive decomposition of Green-Naghdi, it 
comes: 

 : : 0e p
e

dS E S E
E

µ
 Ψ

− + ≥  ∂ 

   (10) 

Given the formalism describes in the second section, the simplification of the inequality before leads to: 

 
e

dS
E

µ Ψ
=

∂
 (11) 

4.1. Calculation of the stress tensor: Piola-Kirchhoff II 
To determine the stress tensor, it is necessary to define the potential of free energy firstly. As it was said 
in the introduction, there are two main in-plan deformation mode associated to this macroscopic model. 
One in elongation and one in shear. Since the assumption of decoupled mode is made, the behavior can 
be described using an elastic potential using these following invariants. 

 ( )11 1 1:eI E G G= ⊗
 

 (12) 

 ( )22 2 2:eI E G G= ⊗
 

 (13) 

 ( ) ( )12 1 2 2 1: :e eI E G G E G G= ⊗ + ⊗
   

 (14) 

Then, it now possible to define the potential of free energy, and therefore the Piola-Kirchhoff tensor. 
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 ( )2 2 2
11 22 12 1 11 2 22 12

1( , , )
2 shI I I K I K I K IΨ = ⋅ + +  (15) 

With 𝐾𝐾1, 𝐾𝐾2, 𝐾𝐾𝑠𝑠ℎ, are material parameters concerning the rigidity of each transformation modes. By 
derivating equation 15 by the elastic part of the Green-Lagrange tensor, it comes equation 16. 

 
( )( ) ( ) ( )( ) ( )
( )( ) ( )

1 1 1 1 1 2 2 2 2 2

' 1 2 2 1 1 2 2 1

: :

:

e e

sh e

K E G G G G K E G G G G
S

K E G G G G G G G G
µ
 ⊗ ⋅ ⊗ + ⊗ ⋅ ⊗ +
 =  

⊗ + ⊗ ⋅ ⊗ + ⊗  

       

       

 (16) 

It is important to notice that 𝐾𝐾𝑠𝑠ℎ′ = 0.5 ⋅ 𝐾𝐾𝑠𝑠ℎ. Indeed, because of the shear invariant definition and since 
the elastic part of Green-Lagrange tensor is symmetric, the component 𝐸𝐸𝑒𝑒12 appears twice in each 
direction. 

4.2. Plasticity criterion 
As it was said before, the plasticity criterion can be written using the dissipative part D from equation 
8. Given the macroscopic approach and being in total lagrangian (reasoning on the initial configuration), 
the definition of the dissipative potential is following: 

 : pD S E=


 (17) 

Using equation 6, the equation above can be rewritten: 

 ( )1 2 2 1: cos
2 2

p pD S G G G G
γ γ  

= ⊗ + ⊗  
  

   

 (18) 

As the variation of the dissipative part of Green-Lagrange is only composed by the components 12 and 
21, then by duality, only the component 12 and 21 of the stress tensor will contribute to the energy. The 
plasticity criterion without hardening evolution is following: 

 ( ) ( )0
1 2 2 1:s yf S S G G G G S= ⊗ + ⊗ −
   

 (19) 

Since, 𝑓𝑓𝑠𝑠 is depending on a yield 𝑆𝑆𝑦𝑦, there are different domains in which the value of the criterion can 
be located: 

• The elastic domain such as 𝑓𝑓𝑠𝑠 < 0 
• The limit of the elastic domain such as 𝑓𝑓𝑠𝑠 = 0 
• The plastic domain such as 𝑓𝑓𝑠𝑠 > 0 

 

4.3. Hardening function 
There is two hardening function for this kind of behaviour. The first one is the kinematic hardening 
which represents the displacement of the centre of the yield surface. This is commonly written trough a 
second-order tensor noted X and this tensor must be chosen to be able to define the reduce stress, 
commonly noted S – X inside the criterion: 

 ( ) ( ) ( )1 2 2 1, :X
s yf S X S X G G G G S= − ⊗ + ⊗ −

   

 (20) 

Such as: 

 ( )1 2 2 1
1 ( )
2 pX q G G G Gγ= ⊗ + ⊗

   

 (21) 
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Where 𝑞𝑞(𝛾𝛾𝑝𝑝) is a function determinate experimentally which represent the evolution of the surface 
center. The second is the isotropic hardening which increase or decrease the plasticity yield 𝑆𝑆𝑦𝑦. The 
representative function is 𝛼𝛼 and the formalism is following:  

 ( ) ( ) ( )( )1 2 2 1:s y pf S S G G G G Sα α γ= ⊗ + ⊗ − +
   

 (22) 

Given that the projection is equal in both direction, it comes: 

 ( )1 2 2 1
1: 2 ( ) ( )
2 p pX G G G G q qγ γ⊗ + ⊗ = =

   

 (23) 

 

 

Figure 4. The yield criterion in the 3D stresses space (with 𝛾𝛾𝑝𝑝 supposed to be greater than zero). 

 

Finally, the total yield criterion is only depending on a single variable which is the angle of plastic 
deformation 𝛾𝛾𝑝𝑝. 

 ( ) ( ) ( ) ( )( )1 2 2 1:s p p y pf S G G G G q Sγ γ α γ= ⊗ + ⊗ − − +
   

 (24) 

5. Calibration by a Picture Frame experimentation 
The elasto-plastic model described above needs to be compared to experimental results to be calibrated. 
To do that, a Picture Frame experimentation is made imposing this following tensor of total 
transformation F: 

 ( ) ( )1 1 2 2 1 2 2 1cos sin
2 2

t tF G G G G G G G Gγ γ   = ⊗ + ⊗ + ⊗ + ⊗   
   

       

 (25) 

Equation 25 coupled with equation 24 leads to: 

 ( ) ( ) ( )( ) ( ) ( )( )2 sin sins p sh t p p y pf K q Sγ µ γ γ γ α γ= − − − +  (26) 

The experimental results are shown in figure 5: 
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Figure 5. Experimental behaviour during cycling loading and its measurement uncertainties. 

Through the behavior presented in figure 5, it is possible to deduce the equation describing the hardening 
functions (Kinematics and Isotropic). 

 
8

1
( ) i

p i p
i

q Qγ γ
=

=∑  (27) 

 
8

1
( ) i

p i p
i

Aα γ γ
=

=∑  (28) 

Such as 

Table 1. Kinematics and Isotropic hardening parameters. 

i 𝑄𝑄𝑖𝑖 𝐴𝐴𝑖𝑖 i 𝑄𝑄𝑖𝑖 𝐴𝐴𝑖𝑖 

1 0.01 0.0016 5 2.853 0.0013 
2 -0.00008 -0.018 6 -0.004 3.962 
3 0.0084 -0.0002 7 3.184 -0.00126 
4 0.000982 0.926 8 1.810 1.907 

Using the parameters presented in table 1 and 𝐾𝐾1 = 𝐾𝐾2 = 10000 and 𝐾𝐾𝑠𝑠ℎ = 142 the simulation result 
is following: 

 

Figure 6. Experimental result and comparison with numerical result. 
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As it can be shown on the figure 6, the numerical result is satisfying during the loading phase but does 
not give efficient results during the unloading phase. To improve this model, the strategy adopted here 
is the use of nested surface as Mroz described it in 1967. Considering the figure 4, where only one 
surface was used and adding two other surfaces inside which are following specific evolution laws 
(linear) it would be possible to get the hysteretical behaviour of the material. 

6. Improvement of the model using nested surfaces 
As it was said before, the constitutive model is good enough for the loading phase but adapted for the 
unloading phase. In 1967 Mroz proposed a possibility to fit an elastoplastique behaviour with several 
surfaces. The idea in this section is to improve the general modelisation by adding two surfaces inside 
the surface presented before. The evolution laws of internal surfaces are supposed to be linear but are 
different following different case. Every laws and cases are explained below.  
 

6.1. Formalism with three surfaces 
The improved model is composed of three surfaces which are presented on figure 7.  
 

 

Figure 7. Improved constitutive model with two internal surfaces. 
 
In figure 7, several surfaces are presented: 

• The external yield surface (denoted 0) in black (or denoted 0) on the figure 7. 
• An internal yield surface (denoted i with 𝑖𝑖 ∈ [1,𝑛𝑛 − 1] with 𝑛𝑛 the total number of internal 

surfaces in blue (or denoted 1) on the figure 7.  
• The smallest yield surface (denoted n) in green (or denoted 2) on the figure 7. 

The first possibility is when the smallest surface is active. This surface is active at the beginning of the 
simulation or at the transition between the loading and the unloading phase. 
 

6.2. The smallest surface is active 
In this case, only one surface has to be updated, and its yield function is described by this following 
equation: 

 ( ) ( ) ( ) ( )( )1 2 2 1:s p n p yn n pf S G G G G q Sγ γ α γ= ⊗ + ⊗ − − +
   

 (29) 
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Thus, it is sufficient to update the active surface n by its proper linear evolution laws: 

 
( ) ( )
( ) ( )

0n p n p

n p n p

a

q h

α γ α γ

γ γ

 =


= ∆
 (30) 

Then, the second possibility is when a surface i between the smallest and the external surfaces is active. 

6.3. A middle surface is active 
In this case, more surfaces have to be updated. Indeed, in figure 7 if the surface 1 is active, then the 
surfaces 1 and 2 must be updated. Concerning the active surface i, the specific laws are following: 

 ( ) ( ) ( ) ( )( )1 2 2 1:s p i p yi i pf S G G G G q Sγ γ α γ= ⊗ + ⊗ − − +
   

 (31) 

The coefficients are updated by these following equations:  

 
( ) ( )
( ) ( ) ( )

0i p i p

i p i p i p p

a

q h q

α γ α γ

γ γ γ γ

 =


= ∆ + − ∆
 (32) 

Concerning the surfaces j smaller than the active surface such as 𝑗𝑗 ∈ [𝑖𝑖 + 1,𝑛𝑛] their coefficients of the 
evolution laws are updated as following: 

 
( ) ( )
( ) ( ) ( ) ( )( )

0

1 2 2 1

, [0,1]

: sgn

j p j p i j n j

i p p yj j p

a a a a j a

q S G G G G S

α γ α γ

γ γ α γ

 = > > ∀ ∈


= ⊗ + ⊗ − ∆ +
   

 (33) 

As it can be seen, the evolution laws are made to keep the contact between the surface in order to be 
fully representative. The latest case is when the active surface is the external one. 

6.4. The external surface is active 
In this case, the external evolution laws are following the laws presented on equations 26, 27 and 28. 
However, it is still necessary to update the internal surfaces j such as 𝑗𝑗 = [1,𝑛𝑛] by the same evolution 
laws presented in equations 33. 

6.5. Final result of the final model 
The result is presented on figure 8. As it can be shown, the model is compatible for positive and even 
negative loading and unloading. All parameters used on the constitutive equations and on the evolution 
laws are presented in table 2.  

Table 2. Evolution laws coefficients. 

|𝛾𝛾𝑡𝑡| (𝐷𝐷𝐷𝐷𝐷𝐷  𝑎𝑎0 𝑎𝑎1 𝑎𝑎2 ℎ0 ℎ1 ℎ2 

[00, 19[ 1 0.9 0.85 1 0.2 2 
[19, 28[ 1 0.9 0.75 1 1 2 
[28, 32[ 1 0.9 0.6 1 1.5 4 
[32, 37[ 1 0.9 0.5 1 2 8 

[37, 40+[ 1 0.99 0.45 1 4 10 
 

The material coefficients are presented in table 3. 
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Table 3. Material coefficients. 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 

𝑲𝑲𝟏𝟏 10000 
𝑲𝑲𝟐𝟐 10000 
𝑲𝑲𝒔𝒔𝒔𝒔 142 
𝑺𝑺𝒚𝒚𝟎𝟎 0.0081 
𝑺𝑺𝒚𝒚𝟏𝟏 0.006 
𝑺𝑺𝒚𝒚𝟐𝟐 0.0025 

 

 

Figure 8. Final result of the improved constitutive model. 

The model, using three nested surfaces makes possible to approach the experimental acquisition 
correctly. The result would be even better by adding other surfaces. However, it is necessary to find a 
compromise between the number of surfaces and the simulation time. Indeed, in this case, having very 
small and very close plasticity yields impose small increments at the beginning to avoid instabilities 
between the surfaces. 

7. Conclusion 
The principal objective of this paper is to propose an elasto-plastic constitutive model considering the 
hysteritical effect of the material during an unloading phase. To do that, two major innovations were 
written. Firstly, the additive decomposition of Green-Naghdi has been adapted for anisotropical material 
knowing high geometrical no-linearities (under large strains). On the other hand, the use of the Mroz 
theory about nested surfaces gives the possibility to approach the hysteritical behaviour of the material. 
As it is possible to see on the figure 8, this model is good enough, but it needs a large quantity of 
parameters which can be difficult to identify. However, it is very easy to compute this model since it 
depends by only one variable. Then, a simple Newton-Raphson algorithm permits to get a solution very 
quickly. Finally, this model is a first step to describe dissipative effect and high non-linearity for woven 
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fabric during its shaping phase. It completes the models already written who are, for a majority of them, 
hyper-elastic or written in the context of small perturbation. 
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