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Abstract.  The paper presents free vibration analysis of laminated composite plates using WU-C2 
RBF based meshfree method. Analysis of vibration response of laminated plate using three transverse 
shear functions is carried out using simply supported boundary conditions. The governing equations 
are based on HSDT and Hamilton principle. The effect of side to thickness ratio can be accurately 
analysed using the present meshless method.  Performance of the present method is illustrated by 
investigating characteristic properties of laminated composite through numerical examples.  
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1. Introduction 
 

Composite materials have been playing an essential role in various research areas owing to 
development of material science and technology.  To achieve desired properties, layers of 
orthotropic materials are assembled systematically in different possible orientation and thus 
laminated composites are manufactured.  Aeronautical industry, Structural industry, Power 
generation plants, Automobile industry etc. including various other domains involve intensive 
utilization of various laminated materials. Dai et.al[1] used HSDT for analysis of static 
deflection and vibration of laminated composite plates . Bui et.al [2] carried out vibration 
analysis of a laminated plate by application of Kriging interpolation method. Fallah N. et.al[3] 
studied  the natural frequency of laminated plates using a meshless finite volume formulation. 
Ferriera et.al[4] analyzed the vibration of thick and symmetric laminated plates using FSDT 
based on MQ radial basis function. Wang Xinwei[5] used discrete singular convolution (DSC) 
method for investigation of free vibration analysis of three-layer angle-ply symmetric 
laminated plates. Bouazza et.al[6] analyzed natural frequency of laminated plates by 
employing nth order HSDT. Kulikov GM et.al[7] implemented the strong formulation for the 
3D vibration analysis of laminated plates. 
 

 
2. Mathematical Formulation  
A rectangular laminated composite plate of length ‘a’, breadth ‘b’ along x, y-axes respectively and 
thickness ‘h’ in z direction. The midplane coincides with x-y plane of the coordinate system. It is assumed 
that there is perfect bonding between the layers of laminated plates. Figure 1 shows the geometry of 
laminated plate in the rectangular coordinate system. 
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 Figure 1 Geometry of laminated plate in rectangular coordinate system 
 
Displacement field at any point on the plate, made up of uniform thickness, is expressed as 
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is the transverse shear function. 

Table 1. Transverse shear function ( )f z . 

S.No. f (z) Abbreviation  
1 2

2
4z. 1 z

3h
 −  

 HSDT 1 Levinsion [8], Reddy[9] 

2 ( )2z
h( 2z.m , m 3− =  HSDT 2 Mantari et.al [10] 

3 ( )2z
h( 2z.e −

 

HSDT 3 Karama et.al [11] 

 
xU , yU  and zU  are the in-plane and transverse displacements in the plate at any point (x, y, 

z) in x, y and z-direction respectively. And ux, uy and uz are the displacements at midplane of 
the plate at any point (x, y) in x, y, respectively. The functions xψ and  yψ  are the higher 

rotations of the normal to the midplane due to shear deformation about x and y-axes, 
respectively.  

              Governing differential equations of the plate are obtained by collecting coefficients of xuδ , yuδ ,

zuδ , xδψ  and yδψ  which can be expressed as:  
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Force and moment resultants in the plate are expressed as: 
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Laminated plate stiffness coefficients are expressed as: 
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            2.1 Boundary Conditions 
Consistent boundary conditions for an arbitrary edge with simply supported edge conditions 
are obtained and expressed as: 

0, : 0, 0, 0, 0, 0xx y z xx yat x a N u u M= = = = = ψ =
 

0 , : 0, 0, 0, 0, 0x yy z x yyat y b u N u M= = = = ψ = =  
2.2 Solution Methodology 

WU-C2 Radial Basis Function (RBF) ( ) ( ) ( ) ( )( )5 2 3 41 8 40 48 cr 25 cr 5 crg cr cr= − + + + +

is used to discretize the governing differential equations in the space domain. Where, 
( ) ( )2 2

j j jr X X x x y y= − = − + −  
is the radial distance between nodes and ‘m’ and ‘c’ are 

shape parameters. In this work, in order to obtain the shape parameter ‘c’, an expression is as 

followed: 
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Value of 'm' is taken as 7.8 for WU-C2 RBF after validation and convergence study. The 
unknown field variables , , ,x y z xu u u ψ and yψ appearing in governing differential equations is 

assumed in terms of radial basis function as: 
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The governing differential equations are discretized and finally expressed in compact matrix 
form as: 

[ ]{ } [ ]{ }[K] Mδ = δ       
Here, 

{ } [ ]y yx xzuu u Tψψδ = α α α α α
    , 

[K]  is Stiffness Matrix and [M] is mass matrix 
The discretized governing equations for linear free vibration analysis can be written as: 

[ ] [ ] { }2
5 5 5 5 5 1

0N N N N N
K M

× × ×
 + ω δ =        
Using standard eigenvalue, the frequency is calculated as: 
[V, D] = eig ([K], [M]);                                                                                                   

Frequency (ω) = D  
3. RESULT AND DISCUSSION  
To demonstrate the accuracy of present formulation, an RBF based meshless code in MATLAB 
is developed following the analysis procedure as discussed above. Several examples have been 
analyzed and compared with the published results. Based on convergence study, a 15×15 node 
is used throughout the study. 
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Table 2 Convergence study for free vibrations of simply supported laminated plate. 
(E1/E2=40, HSDT 2)  

a/h 13x13 15x15 17x17 19x19 Matsunaga[12] 
5 10.45818 10.47012 10.49048 10.50049 10.6876 

10 15.01458 15.04751 15.05954 15.06507 15.0721 
20 17.60653 17.63393 17.64396 17.64824 17.6369 
25 18.02616 18.05104 18.06009 18.06392 18.0557 
50 18.64462 18.66276 18.66904 18.67157 18.6702 

100 18.81421 18.82859 18.83314 18.83473 18.8352 
 
For verification of solutions obtained for vibration from the proposed WU-C2 RBF based 
meshfree method, a simply supported laminated plate is considered. A four layer [0/90/90/0] 
laminated composite plate used, has the material parameters: E1 = 40E2, G12 = G13 = 0.6E2, 
G23 = 0.5E2, υ12 = 0.25, ρ = 1. The convergences of non-dimensional free vibration 

parameters
2

2
a
h E

 ω ρ
ϖ= 

 
 for different theories are shown in Table 2. It can be seen that 

convergence is achieved within 2 % at 15×15 nodes. 

Table 3 Comparison study of non-dimensional frequency parameters
2

2
a
h E

 ω ρ
ϖ= 

 
 of 

simply supported square plate.  
 

Method a/h 
5 10 20 25 50 100 

HSDT 1 10.449 15.022 17.622 18.042 18.660 18.828 
HSDT2 10.470 15.048 17.634 18.051 18.663 18.829 
HSDT3 10.459 15.036 17.629 18.048 18.662 18.828 

Matsunaga, (M1) 
[12] 10.688 15.072 17.637 18.056 18.670 18.835 
Wu et.al,(W1) [13] 10.682 15.069 17.636 18.055 18.670 18.835 
Zhen W et.al, (Z1) 
[14] 10.729 15.166 17.804 18.240 18.902 19.157 
Cho KN et.Al, (C1) 
[15] 10.673 15.066 17.535 18.054 18.670 18.835 

 
A comparison study of non-dimensional frequency parameter with various span to thickness 
ratios (a/h) is presented in Table 3. It can be seen that the result of the non-dimensional 
natural frequency with various span to thickness ratio (a/h) are compared with Matsunaga 
(M1)[12], Wu et.al (W1)[13] , Zhen W et.al (Z1)[14],Cho et. al(C1)[15]. The present results of 
different theories HSDT 1, HSDT 2, HSDT 3 have good agreement with other published 
results. 

Table 4 A non-dimensional frequency parameter 
2

2
a
h E

 ω ρ
ϖ= 

 
of a [0/90/90/0] SSSS 

laminated square plate (a/h = 10). 
 

Theory E1/ E2 
10 20 30 40 

HSDT 1 9.813367 12.16927 13.79573 15.02168 
HSDT2 9.818596 12.18196 13.81549 15.04751 
HSDT3 9.816299 12.17657 13.8071 15.03642 
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In Table 4, the first normalized frequency obtained from the present different theories HSDT1, 
HSDT2 and HSDT3 is listed with respect to a/h = 10 and various modulus ratios E1/E2 = 10, 
20, 30, 40.  
 
4. CONCLUSION 
Using different HSDT, free vibration response of laminated plate is determined. The present 
WU-C2 RBF based meshfree method is in good agreement with the published results. For 
different theories, in case of thin plates the effect on frequency parameter is negligible, while 
there is considerable effect in case of thick plates. The effect of the span to thickness ratio 
decreases for a/h ≥ 40. 
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