
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

ICCRME-2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 404 (2018) 012030 doi:10.1088/1757-899X/404/1/012030

 
 
 
 
 
 

Analysis of Laminated and FGM Beams using Various 
Theories 

Mirza Shariq Beg, M. Yaqoob Yasin, Hasan M. Khalid 

Department of Mechanical Engineering, Z. H. College of Engineering and Technology, Aligarh 
Muslim University, Aligarh, Uttar Pradesh, India 

E-mail: mirzaamu187@gmail.com 

Abstract- In this work, we present a comparison of some recently developed higher order 
theories for static and free vibration responses of laminated and functionally graded material 
(FGM) beams. The equations of motion are derived using Hamilton's principle. Analytical 
Fourier series solution taking first n terms is derived for beams having simply supported end 
conditions. A computer code in MATLAB has been developed and the results obtained are 
compared with 2D elasticity/finite element solution for laminated beam to assess the accuracy 
of various theories. A parametric study has been presented for deflection, stresses and natural 
frequencies of FG beams. 
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1. Introduction 
Laminated/functionally graded material (FGM) beams have been extensively used as structural 
member in many engineering applications. The popularity of these structures increases day by day due 
to their tailorable material properties which has intrigued researchers in the last few decades. In FGM 
beams, the material properties are smoothly varying along a particular direction (preferably transverse 
direction) which results in continuous normal stresses and makes them utile for the components 
operating in severe thermal environment where the laminated composite structures fail due to 
delamination. The concept of FGM was given by group of material scientists in Japan around mid-
eighties. Sankar [1] presented static analysis of FG beam using Euler-Bernoulli beam theory. This 
theory is suitable for thin beams but the discrepancies evolve as the beam gets thicker. Li [2] presented 
static and dynamic analysis of FG beams considering rotary inertia and shear deformation effects. Sina 
et.al [3] developed a refined first order shear deformation theory to analyze free vibration of FG 
beams. These theories, although consider the shear deformation effects, yet they yield unnatural shear 
stress distribution across the thickness. Higher order theories (HOTs) considering third or higher order 
polynomial/function of thickness coordinate have been developed for FG beams. These theories yield 
accurate results and the distributions of shear stresses are comparable to 2D elasticity solution. Thai 
and Thuc [4] employed various higher order shear deformation theories for bending and free vibration 
analysis of FG beams. Simsek [5] presented natural frequencies of FG beam using classical, first order 
and higher order shear deformation theories. Vo et. al [6] proposed a quasi-3D polynomial shear and 
normal deformation theory taking into account the effects of transverse shear and normal deformation 
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in the displacement field. Kadoli et.al [7] carried out finite element analysis based on third order shear 
deformation theory of FG beams to study their static response. 
 In this work, we present a comparison of various HOTs for the static and free vibration 
responses of laminated and FGM beams. The effective properties are calculated using Voight's rule of 
mixtures (ROM). The Fourier series solution has been obtained considering first 85 odd terms. The 
results obtained are validated with existing literature and commercially available FE package 
ABAQUS. Deflection, stresses and natural frequencies are presented for laminated and FGM beams of 
different a/h values. 

2. Problem formulation 
Consider an FGM beam of length L width b and thickness h having metallic top surface and ceramic 
bottom surface. The concentration of metal and ceramic is smoothly varying with the variation of 
ceramic volume fraction with power law 
 

𝑉𝑐 = �0.5 +
𝑧
ℎ
�
𝑝

 (1) 

The geometry of the beam and the coordinate axes has been shown in figure 1. The bottom surface of 
the beam lies at z = −ℎ 2 ⁄ and top surface lies at z = ℎ 2⁄ . The reference plane lies at z = 0. The 
beam is loaded with transverse pressure Pz at top surfaces without any variation along y axis. For the 
beam having plane stress condition �𝜎𝑦 =  𝜏𝑦𝑧 =  𝜏𝑥𝑦 = 0� and considering 𝜎𝑧 ≃ 0, the material 
constitutive behaviour for FGM beam is expressed as 
 𝜎𝑥 = 𝑄11(𝑧)𝜀𝑥                 𝜏𝑧𝑥 = 𝑄55(𝑧)𝛾𝑧𝑥 (2)   
Where 𝜎𝑥  , 𝜏𝑧𝑥 axial and transverse shear stresses and 𝜀𝑥, 𝛾𝑧𝑥 are axial and transverse shear strains, 
𝑄11(𝑧) = 𝑌(𝑧) and 𝑄55 = 𝑌(𝑧)/2(1 + 𝜈(𝑧)) are reduced stiffness coefficients. The effective values 
of Young's modulus and Poisson's ratio are obtained using ROM 
 

𝐸(𝑧) = 𝑉𝑐𝑌𝑐 + 𝑉𝑚𝑌𝑚                 𝜈(𝑧) = 𝑉𝑐𝜈𝑐 + 𝑉𝑚𝜈𝑚 (3)   

 
Figure 1. Geometry and coordinate FG beam 

 
For laminated beams, 𝑄11(𝑧) = 𝑌(𝑧) is taken independent of 𝑧 and its transformed value from lamina 
coordinate system to the laminate coordinate system has been obtained using transformation equation 
 1

𝑌
=  cos

4 𝜃
𝑌11

+ � 1
𝐺12

− 2𝜈21
𝑌22

� sin2 𝜃 cos2 𝜃 + sin4 𝜃
𝑌22

         1
𝐺31

=  cos
2 𝜃

𝐺31
+ sin2 𝜃

𝐺23
 (4) 

Where 𝜃 is the fiber angle with respect to the 𝑥 − 𝑎𝑥𝑖𝑠. The longitudinal and shear strain in the beam 
are expressed in terms of displacements as 
 

𝜀𝑥 =  𝑢,𝑥                 𝛾𝑧𝑥 = 𝑤,𝑥 + 𝑢,𝑧 (5)   

In present analysis, the kinematic relations of beams are obtained using higher order theories (HOTs). 
The displacement field for the HOTs [8] can be expressed as 
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 𝑢 = 𝑓(𝑧)𝑢�                𝑤 = 𝑤0 (6)   

Where 𝑢� = �𝑢0  𝑤0,𝑥  𝜓0�
T is the displacement vector and 𝑓(𝑧) is a higher order function of 𝑧 in 

matrix form which takes the following form 
 

𝑓(𝑧) =

⎩
⎨

⎧
[1 −𝑧 𝑧 − 4𝑧3/3ℎ2] 

[1 −𝑧 sin (𝜋𝑧/ℎ)]
[1 −𝑧 (𝑧 − (ℎ 𝜋⁄ ) sinh(𝜋𝑧 ℎ⁄ ))]/(cosh (𝜋/2) − 1)

[1 −𝑧 𝑧exp(−2𝑧2/ℎ2)]

�                   

(TOT) 
(Sinusoidal theory) 
(Hyperbolic theory) 
(Exponential theory) 

(7)   

Using equations Eq. (5) and Eq. (6), the strain 𝜀𝑥 and 𝛾𝑧𝑥 are expressed in functional form as 
 𝜀𝑥 = 𝑓1(𝑧) 𝜀1̅                𝛾𝑥𝑧 = 𝑓2(𝑧) 𝜀2̅ (8)   
Where 𝜀1̅ = [𝑢0,𝑥  𝑤0,𝑥𝑥  𝜓0,𝑥],  𝜀2̅ = 𝜓0 and  𝑓1(𝑧) = 𝑓(𝑧) and 
 

𝑓2(𝑧) =

⎩
⎨

⎧ 1 − 4𝑧2/ℎ2
(𝜋/ℎ) cos(𝜋𝑧/ℎ)

cosh(𝜋𝑧/ℎ) − 1/(cosh(𝜋 2⁄ ) − 1)
1 − 4(𝑧2 ℎ2⁄ ) exp(−2 𝑧2 ℎ2)⁄

�                   

(TOT) 
(Sinusoidal theory) 
(Hyperbolic theory) 
(Exponential theory) 

(9)   

The equations of motion based on different HOTs of Eq. (7) are derived using Hamilton's principle. 
Using〈… 〉 = ∑ ∫ (… )𝑏d𝑧zk

−

zk−1
+

L
K=1 , the Hamilton's principle takes the following form 

 
∫ �〈�𝜌𝑘𝑢̈𝛿𝑢 + 𝜌𝑘𝑤̈𝛿𝑤 + 𝜎𝑥𝛿𝜀𝑥 + 𝜏𝑧𝑥𝛿𝛾𝑧𝑥�〉 − 𝑏𝑃𝑧𝛿𝑤(𝑥,ℎ 2⁄ , 𝑡)�d𝑥 −𝑥

�〈𝜎𝑥𝛿𝑢 + 𝜏𝑧𝑥𝛿𝑤〉|𝑥 = 0                  
(10)   

∀ 𝛿𝑢0, 𝛿𝑤0  and 𝛿𝜓0, where� ̈ � = ( ),𝑡𝑡. Substituting the displacements and strains and integrating 
Eq. (10) by parts yields the following equations of motion 
 

𝐼11𝑢0̈ + 𝐼12𝑤0,𝑥̈ + 𝐼13𝜓0̈ − 𝑁𝑥,𝑥 = 0 
𝐼21𝑢0,𝑥̈ − 𝐼22𝑤0,𝑥𝑥̈ + 𝐼23𝜓0,𝑥̈ + 𝐼𝑤0̈ − 𝑀𝑥,𝑥𝑥 = 𝑃2 

𝐼31𝑢0̈ + 𝐼32𝑤0,𝑥̈ + 𝐼33𝜓0̈ − 𝑃𝑥,𝑥 + 𝑄𝑥 = 0 
(11)   

Where 𝐼𝑖𝑗 and 𝐼 are the inertia parameters 𝑁𝑥 ,𝑀𝑥 ,𝑃𝑥and 𝑄𝑥 are the force, moment, higher order 
moment and shear resultants respectively and 𝑃2 is the load vector. These resultants are expressed in 
terms of field variables as 
 𝑁𝑥 = 𝐴11𝑢0,𝑥 + 𝐴12𝑤0,𝑥𝑥 + 𝐴13𝜓0,𝑥   ,     𝑀𝑥 = 𝐴12𝑢0,𝑥 + 𝐴22𝑤0,𝑥𝑥 + 𝐴23𝜓0,𝑥  

𝑃𝑥 = 𝐴31𝑢0,𝑥 + 𝐴32𝑤0,𝑥𝑥 + 𝐴33𝜓0,𝑥  ,       𝑄𝑥 = 𝐴̅𝜓0                   
(12)   

Where the beam stiffnesses 𝐴ij and the beam inertia coefficients 𝐼ij are defined as 
 

�
𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

� = 〈𝑓T(𝑧)𝑓(𝑧)𝑄11〉        �
𝐼11 𝐼12 𝐼13
𝐼21 𝐼22 𝐼23
𝐼31 𝐼32 𝐼33

� = 〈𝜌𝑘𝑓T(𝑧)𝑓(𝑧)〉                  (13)   

Substituting the Eq. (12) in Eq. (11), yield the equations of motion 
 

𝐿�𝑈�̈ + 𝐿𝑈� = 𝑃�                  (14)   

Where 𝑈� = [𝑢0 𝑤0 𝜓0]𝑇, 𝑃� = [0 𝑃2 0]T . 𝐿� and 𝐿 are symmetric matrices containing 
differential operators.  
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 We derive exact solution for the coupled differential equations of motion having simply 
supported boundary condition. Considering n terms of Fourier series, the primary and secondary 
variables are expressed as function of sine and cosine as 
 

�
𝑢0
𝑤0
𝜓0
� = ∑ �

(𝑢𝑜)𝑛cos𝑛�𝑥
(𝑤𝑜)𝑛sin𝑛�𝑥
(𝜓𝑜)𝑛cos𝑛�𝑥

�            �

𝑁𝑥
𝑀𝑥
𝑃𝑥
𝑄𝑥

�∞
𝑛=1 = ∑

⎣
⎢
⎢
⎡
(𝑁𝑥)𝑛sin𝑛�𝑥
(𝑀𝑥)𝑛sin𝑛�𝑥
(𝑃𝑥)𝑛sin𝑛�𝑥
(𝑄𝑥)𝑛cos𝑛�𝑥⎦

⎥
⎥
⎤
            𝑃2∞

𝑛=1 = (𝑃2)𝑛sin𝑛�𝑥                  (15)   

Substituting the solution in Eq. (14) yield the equation of motion, 
 

𝑀𝑈�̈𝑛 + 𝐾𝑈�𝑛 = 𝑃�𝑛                  (16)   

Where 𝑈�𝑛 = [𝑢0 𝑤0 𝜓0]𝑛T is the displacement vector for the 𝑛𝑡ℎ Fourier term, 
𝑃�𝑛 = [0 −𝑃2 0]T is the corresponding load vector. M and K are the mass and stiffness matrices. 
For performing the free vibration analysis, 𝑃�𝑛 is set to zero to transform Eq. (16) to a generalized 
eigenvalue problem. 

3. Results and Discussions 
For assessing the different HOTs presented above for their accuracy, four layers symmetric  
0°/90°/90°/0° and antisymmetric �0° 90° 0° 90°⁄⁄⁄ � laminated beam have been considered. Each 
lamina of the laminated beam has equal thickness. The values of engineering constants are:  
Young's modulii [Y1 Y2 Y3] = [181 10.3 10.3] GPa, shear modulii [G23 G31 G12] =
[2.87 7.17 7.17]GPa and Poisson’s ratios [ν23 ν31 ν12] = [0.33 0.25 0.25]. The uniformly 
distributed load 𝑃𝑧 is applied on the top surface of the beam for obtaining the static response by 
different HOTs. Non-dimensionalised formulae used are: transverse displacement (𝑤�0 =
100𝑤0𝑌2 ℎ𝑆4⁄ 𝑃𝑧), longitudinal shear stress  𝜎�𝑥 = 𝜎𝑥 𝑆2𝑃𝑧⁄  and transverse shear stress 𝜏̅𝑧𝑥 = 𝜏𝑧𝑥 𝑆𝑃𝑧⁄ .  
 

Table 1. Comparison of results for symmetric and antisymmetric laminated composite beams. 

0°/90°/90°/0° 0°/90°/0°/90° 
S Method 𝑊�0(0.5𝑙) 𝜎�𝑥𝑡(0.5𝑙) 𝜎�𝑥𝑏(0.5𝑙) 𝜏̅𝑧𝑥𝑐 (0) 𝑊�0(0.5𝑙) 𝜎�𝑥𝑡(0.5𝑙) 𝜎�𝑥𝑏(0.5𝑙) 𝜏̅𝑧𝑥𝑐 (0) 
5 Exact [9] -2.6748 -1.0602 1.0711 -0.5688 -3.7943 -1.4862 0.1582 -0.7667 

 TOT -2.5530 -1.0097 1.0097 -0.5168 -3.2514 -1.4345 0.1270 -0.7236 

 Sine -2.5815 -1.0221 1.0221 -0.5427 -3.2559 -1.4430 0.1280 -0.7449 

 Hyperbolic -1.1633 -0.7875 0.7875 -0.0000 -2.1297 -1.2153 0.1099 -0.0000 

 Exponential -2.6045 -1.0341 1.0341 -0.5693 -3.2568 -1.4508 0.1289 -0.7663 
10 Exact [9] -1.4343 -0.9031 0.9059 -0.6093 -2.4461 -1.3442 0.1268 -0.8242 

 TOT -1.3975 -0.8901 0.8901 -0.5374 -2.2976 -1.3307 0.1188 -0.7444 

 Sine -1.4054 -0.8932 0.8932 -0.5669 -2.2991 -1.3328 0.1191 -0.7685 

 Hyperbolic -1.0473 -0.8346 0.8346 -0.0000 -2.0162 -1.2759 0.1146 -0.0000 

 Exponential -1.4120 -0.8962 0.8962 -0.5972 -2.2996 -1.3348 0.1193 -0.7928 
20 Exact [9] -1.1152 -0.8636 0.8641 -0.6295 -2.0958 -1.3081 0.1188 -0.8529 

 TOT -1.1056 -0.8602 0.8602 -0.5477 -2.0579 -1.3048 0.1168 -0.7547 

 Sine -1.1076 -0.8610 0.8610 -0.5789 -2.0583 -1.3053 0.1169 -0.7802 

 Hyperbolic -1.0178 -0.8463 0.8463 -0.0000 -1.9875 -1.2911 0.1157 -0.0000 

 Exponential -1.1093 -0.8617 0.8617 -0.6112 -2.0584 -1.3058 0.1169 -0.8060 
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Deflection and stresses of laminated beam with different HOTs are enumerated in Table 1. Results 
display almost similar accuracy with exponential shear deformation theory yielding closer results to 
2D elasticity solution [9]. To further elaborate the layer-wise mechanics, through-the-thickness 
variations of longitudinal and transverse shear stresses are presented in Figure.2, for symmetric and 
antisymmetric laminates along with the 2D FE results obtained using ABAQUS. Unlike other theories, 
the hyperbolic shear deformation theory yields zero shear stress at mid-plane and non-zero values at 
top and bottom of the beams.  
 Figure.3 exhibits the variation of effective properties namely volume fraction and Young's 
modulus with varying power-law exponent (𝑝 = 0.25, 0.5, 1, 2, 4) for the FG beam having aluminium 
at the bottom [𝑌 = 70 𝐺𝑃𝑎, 𝜈 = 0.3] and alumina at the top [𝑌 = 380 𝐺𝑃𝑎, 𝜈 = 0.3] [10]. ROM is 
used as homogenization scheme to evaluate the effective properties. 
 
 

 
Figure 2. Variation of stresses in laminated beams across the thickness (S=5). 

 
 Now we analyze FG beam having aluminum at the top and zirconia at the bottom [10] using 
different theories for static response. The beam is simply supported and under a uniform pressure 𝑃𝑧 at 
the top surface. Results for non dimensionalised transverse deflection (𝑤0  = 348𝑤0𝑌𝐴𝑙 60ℎ𝑆4𝑃𝑧)⁄   at 
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the mid span of the beam using different theories are presented in Table 2. Different span to thickness 
ratios (𝑆 =  𝑎 ℎ⁄  =  4, 16) are considered for the analysis. It can be observed that the 𝑤�0 decreases 
with increase in the power-law exponent and the trend are validated with the existing literature [10]. 
Also, for higher span to thickness ratio i.e. S = 16, results are in close proximity with the results 
available in the existing literature [10]. Through the thickness variation for the different stresses 
developed under uniform loading in FG beam are presented in Figure.4. As predicted earlier for 
laminated composites, here also, hyperbolic shear deformation theories display distant behavior for the 
variation of transverse shear stress. However minimal difference is found in longitudinal stresses for 
the theories presented. 
 

 
Figure 3. Variation of effective properties across thickness of FG 𝐴𝑙/Al2O3beam. 

 
 
Table 2. Non-dimensional central deflection of FG beams for various values of power law exponent. 

S Theory Power-law exponent "p'' 

  
0 0.2 0.5 1 2 5 ∞ 

4 FSDT[10] 1.1300 0.8486 0.7147 0.6293 0.5616 0.4918 0.3955 

 
HSBT[4] 1.1558 0.8710 0.7326 0.6427 0.5714 0.4998 0.4045 

 
HSDT[10] 1.1558 0.8710 0.7325 0.6427 0.5714 0.4998 0.4045 

 
TOT 1.1558 0.8710 0.7326 0.6427 0.5714 0.4998 0.4045 

 
Sine 1.1555 0.8708 0.7324 0.6426 0.5712 0.4996 0.4044 

 
Hyperbolic 1.0231 0.7664 0.6483 0.5739 0.5142 0.4501 0.3581 

 
Exponential 1.1547 0.8703 0.7320 0.6422 0.5708 0.4993 0.4042 

16 FSDT[10] 1.0081 0.7555 0.6394 0.5661 0.5072 0.4439 0.3528 

 
HSDT[4] 1.0098 0.7570 0.6406 0.5670 0.5078 0.4444 0.3534 

 
HSDT[10] 1.0097 0.7569 0.6406 0.5670 0.5078 0.4444 0.3534 

 
TOT 1.0098 0.7569 0.6406 0.5670 0.5078 0.4444 0.3534 

 
Sine 1.0097 0.7569 0.6406 0.5670 0.5078 0.4444 0.3534 

 
Hyperbolic 1.0014 0.7504 0.6353 0.5627 0.5042 0.4413 0.3505 

 
Exponential 1.0097 0.7569 0.6406 0.5670 0.5078 0.4444 0.3534 
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Figure 4. Variation of stresses in FG beams through thickness for (S=4). 

 
 
 Next, free vibration analysis is carried out for FG beam having aluminium at the bottom and 
alumina at the top [10]. Fundamental frequencies are evaluated for different theories against varying 
power-law exponent for two different span to thickness ratios (𝑆 =  5, 20). Results for non 
dimensionalised fundamental frequencies �𝜔� = 𝜔ℎ𝑆2�𝜌𝐴𝑙 𝑌𝐴𝑙⁄ � of FG beam for simply-supported 
end conditions from different theories are presented in Table 3. It is very much evident from Table 3 
that the results obtained from the present formulation for the fundamental frequencies are coherent 
with the results in the literature [10]. In addition, results from the theories presented here are 
displaying the same trend for the variation of fundamental frequencies with power-law exponent as 
displayed in Table 3. 
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Table 3. Comparison of the non-dimensional fundamental natural frequencies of FG beams with 
various values of power-law exponent. 

S Theory Power-law exponent "p'' 

  
0 0.2 1 2 5 10 ∞ 

5 FSDT[10] 5.1526 4.8033 3.9711 3.6050 3.4025 3.2963 2.6773 

 
HSBT[4] 5.1528 4.8081 3.9904 3.6264 3.4012 3.2816 2.6773 

 
HSDT[10] 5.1528 4.8059 3.9716 3.5979 3.3743 3.2653 2.6773 

 
TOT 5.1527 4.8081 3.9904 3.6264 3.4012 3.2816 2.6773 

 
Sine 5.1531 4.8084 3.9907 3.6263 3.3998 3.2811 2.6775 

 
Hyperbolic 5.3573 4.9866 4.1238 3.7577 3.5731 3.4687 2.7836 

 
Exponential 5.1542 4.8093 3.9914 3.6267 3.3990 3.2813 2.6781 

20 FSDT[10] 5.4603 5.0812 4.2039 3.8349 3.6490 3.5405 2.8371 

 
HSDT[4] 5.4603 5.0815 4.2051 3.8361 3.6485 3.5390 2.8371 

 
HSDT[10] 5.4603 5.0814 4.2039 3.8343 3.6466 3.5379 2.8371 

 
TOT 5.4603 5.0815 4.2051 3.8361 3.6485 3.5390 2.8371 

 
Sine 5.4603 5.0815 4.2051 3.8361 3.6484 3.5389 2.8371 

 
Hyperbolic 5.4751 5.0944 4.2147 3.8457 3.6613 3.5530 2.8448 

 
Exponential 5.4604 5.0816 4.2051 3.8361 3.6483 3.5390 2.8372 

4. Conclusions 
This study dealt with static and free vibration analysis of simply supported laminated and functionally 
graded (FG) beam using various theories. It is found that exponential shear deformation theory yields 
closer results to 2D elasticity solution. Unlike other theories, the hyperbolic shear deformation theory 
yields zero shear stress at mid-plane and non-zero values at top and bottom of the laminated and FG 
beam. Also, for higher span to thickness ratio i.e. 𝑆 =  16, results are in close proximity with the 
results available in the existing literature. 
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