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Abstract. Thermal buckling analysis of a laminated hybrid beam with surface mounted 
piezoelectric layers is presented in this work. A one dimensional finite element (1D-FE) model 
based on efficient layerwise (zigzag) theory is used for the analysis. Two noded and three 
noded 1D elements are utilized for interpolating electromechanical and thermal variables 
respectively.  Piezoelectric layers are bonded to top and bottom surfaces of the elastic substrate 
of hybrid beam.The beams are subjected to uniform temperature with closed circuit condition 
at top and bottom surfaces. The thicknesses of piezoelectric layers are varied and its effect on 
critical buckling temperatures is studied. Results are presented for composite and sandwich 
beam configurations under simply supported boundary conditions. The 1D-FE results are 
compared with the 2D-FE results obtained using commercial FE package ABAQUS. 

1. Introduction 
Temperature variations cause significant shape distortions and thermal stresses in laminated composite 
and sandwich structures. Electro thermal load induce pre-buckling transverse normal strain. This may 
have significant effect on the buckling temperature depending on the material properties. Designing 
and analysis of such practical smart structures inevitably require the use of finite element (FE) method. 
Khdeir [1] studied thermal buckling of cross-ply laminated composite beams. He developed the state 
space concept in conjunction with Jordan canonical form. Metin Aydogdu [2] presented the thermal 
buckling analysis of cross-ply laminated composite beams subjected to different boundary conditions 
on the basis of a unified three degree of freedom shear deformable beam theory. Kapuria and Alam [3] 
developed an efficient electromechanically coupled geometrically nonlinear zigzag theory for buckling 
analysis of hybrid piezoelectric beams, under electro-thermo-mechanical loads. Zhong et al. [4] 
investigated the thermal buckling and postbuckling behaviour of composite plates with embedded 
SMA wire actuators using a finite element analysis. Chen and Chen [5] investigated thermal buckling 
of laminated cylindrical shells and determined the critical temperature under clamped and simply 
supported end conditions. 

A one dimensional finite element (1D-FE) model of hybrid piezoelectric beam is presented for 
buckling analysis under thermal load. The coupled efficient layerwise (zigzag) theory [3] is used for 
making the model. The thicknesses of piezoelectric layers bonded to the top and bottom surfaces of 
the beam are varied and its effects on critical buckling temperatures is studied. Hybrid composite and 
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sandwich beam configurations under simply supported boundary conditions are considered for the 
analysis. 1D-FE results are compared with the 2D-FE results obtained using commercial FE package 
ABAQUS. 

2. One dimensional Finite element model of hybrid piezoelectric beam 
Consider a hybrid beam subjected to thermal load, transverse load and actuation potentials applied to 
some piezoelectric layers. The load distribution is independent of the width coordinate. The potential, 
thermal and displacement field variables 𝜙,𝜃,𝑢𝑥 and 𝑢𝑧 are assumed [3] in terms of the three primary 
variables of the reference plane,𝑢𝑥0 ,𝑢𝑧0 ,𝜓0 the potential variables,  𝜙𝑙 and the thermal variable, 𝜃𝑗as  

𝜙(𝑥, 𝑧, 𝑡) = 𝜉𝜙𝑙 (𝑧)𝜙𝑙(𝑥, 𝑡) (1) 

𝜃(𝑥, 𝑧, 𝑡) = 𝜉𝜃
𝑗(𝑧)𝜃𝑗(𝑥, 𝑡) (2) 

𝑢𝑥(𝑥, 𝑧, 𝑡) = 𝑢𝑥0(𝑥, 𝑡) − 𝑧
𝜕𝑢𝑧0
𝜕𝑥

(𝑥, 𝑡) + 𝑆𝑘(𝑧)𝜓0(𝑥, 𝑡) 

+𝑆𝑘𝑙(𝑧)
𝜕𝜙𝑙

𝜕𝑥
(𝑥, 𝑡) + 𝑆̅𝑘𝑗(𝑧)

𝜕𝜃𝑗

𝜕𝑥
(𝑥, 𝑡) 

(3) 

𝑢𝑧(𝑥, 𝑧, 𝑡) =  𝑢𝑧0(𝑥, 𝑡) −  𝜉𝜙̅𝑙 (𝑧)𝜙𝑙(𝑥, 𝑡) + 𝜉𝜃̅
𝑗(𝑧)𝜃𝑗(𝑥, 𝑡) (4) 

where 𝜉𝜙𝑙 (𝑧) and 𝜉𝜃
𝑗(𝑧) are linear interpolation functions for through the thickness variation of 

potential field 𝜙 and thermal variable 𝜃; 𝜉𝜙̅𝑙 (𝑧) and 𝜉𝜃̅
𝑗(𝑧) are piecewise linear and quadratic functions 

respectively for electric and thermal fields; 𝑆𝑘(𝑧),𝑆𝑘𝑙(𝑧) and 𝑆̅𝑘𝑗(𝑧) are the cubic functions of z. The 
axial displacement, 𝑢𝑥 and transverse shear stress, 𝜎𝑧𝑥 are continuous at the layer interfaces and the 
displacement field ensures shear traction free condition at the top and bottom surfaces of beam 

The variational equation, using the extended Hamilton’s principle [6] for the beam, is obtained as: 
∫ ��𝛿𝜀1̃𝑇 𝛿𝜀5̃𝑇

𝜕𝛿𝜙𝑙

𝜕𝑥
𝛿𝜙𝑙�𝐹� − 𝛿𝑢�2𝑇𝑔𝑢𝜙 − 𝛿𝑢�2𝑇{𝑞�2 −𝑞�4𝑙 }𝑇 + �

𝜕𝛿𝑢𝑧0
𝜕𝑥

𝑁𝑥
𝜕𝑢𝑧0
𝜕𝑥

�� 𝑑𝑥𝑎
0 −

��𝑁𝑥∗𝛿𝑢𝑥0
∗ + 𝑉𝑥∗𝛿𝑢𝑧0

∗ − 𝑀𝑥
∗ 𝜕𝛿𝑢𝑧0

∗

𝜕𝑥
+ 𝑃𝑥∗𝛿𝜓0∗ + �𝐻𝑙∗ − 𝑉𝜙𝑙

∗
�𝛿𝜙𝑙∗ + 𝑅𝑥𝑙

∗ 𝜕𝛿𝜙𝑙
∗

𝜕𝑥
��
0

𝑎
 

(5) 

where 𝐹� is the generalized stress vector and 𝑔𝑢𝜙 is the electromechanical load vector of the beam; 𝑞�2 
and 𝑞�4𝑙  are the damping loads; 𝑢�2 is the generalised displacement vector; 𝜀1̃ and 𝜀5̃are generalised 
beam mechanical strains; 𝑁𝑥 ,𝑀𝑥 ,𝑃𝑥 ,𝑅𝑥𝑙  and 𝑉𝑥 ,𝑉𝜙𝑙  are the beam stress resultants of 𝜎𝑥 and 𝜎𝑧𝑥 
respectively; 𝐻𝑙and 𝐺𝑙 (discussed later) are the beam electric displacement resultants. The superscript 
* means values at the ends. 

A two noded beam element [7] is considered for electromechanical variables and three noded 
element for thermal variable [8]. The primary variables 𝑢𝑥0 ,𝑢𝑧0 ,𝜓0,𝜙𝑙 and 𝜃𝑗are interpolated in an 
element of length 𝑙 as 

�

𝑢𝑥0
𝑢𝑧0
𝜓0
𝜙𝑙

� = �
𝑁� 0 0 0
0 𝑁� 0 0
0 0 𝑁� 0
0 0 0 𝑁�

�

⎩
⎪
⎨

⎪
⎧𝑢𝑥0

𝑒

𝑢𝑧0
𝑒

𝜓0𝑒

𝜙𝑙𝑒⎭
⎪
⎬

⎪
⎫

, 𝜃𝑗 = 𝑁�𝜃𝑗𝑒 (6) 

where 𝑁� is a vector of linear Lagrange interpolation functions, 𝑁� is a vector of cubic Hermite 
interpolation functions and 𝑁� is a vector of quadratic Lagrange Interpolation functions;  
𝑢𝑥0
𝑒 ,𝑢𝑧0

𝑒 ,𝜓0𝑒 ,𝜙𝑙𝑒 and 𝜃𝑗𝑒are vectors of nodal values.The element generalized displacement vector, 
𝑑𝑒is defined as 

𝑑𝑒𝑇 = �𝑢𝑥0
𝑒𝑇 𝑢𝑧0

𝑒𝑇 𝜓0𝑒
𝑇 𝜙𝑙𝑒

𝑇
� (7) 

The contribution 𝑇𝑒 of one element of length 𝑙 to the integral from 0 to 𝑙 in Eq. (5) for the case of 
static inplane electro-thermo-mechanical load is obtained as 
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𝑇𝑒 = ∫ �𝛿𝜀1̃𝑇𝐹1 + 𝛿𝜀5̃𝑇𝐹5 + �𝜕𝛿𝜙
𝑙

𝜕𝑥
𝛿𝜙𝑙� {𝐻𝑙 𝐺𝑙}𝑇 + 𝛿𝑢�2𝑇𝑞4𝑙

𝑇� 𝑑𝑥𝑙
0   (8) 

where 𝐹1 and 𝐹5 are the vectors of beam stress resultant of 𝜎𝑥 and 𝜎𝑧𝑥 respectively and 𝑞4𝑙  is the 
electrical load. 
For buckling analysis, the transverse loads applied on the bottom and top surfaces of the beam and 
hence total transverse mechanical load are considered as zero. With this consideration the Eq. (8) may 
be simplified as: 

𝑇𝑒 = ∫ �𝛿𝜀̅𝑇 �𝐷�𝜀̅+ 𝑔𝜃2
𝑗 𝜕2𝜃𝑗

𝜕𝑥2
+ 𝑔𝜃1

𝑗 𝜕𝜃𝑗

𝜕𝑥
+ 𝑔𝜃0

𝑗 𝜃𝑗� − 𝛿𝑢�2𝑇�𝑔̅𝑢𝜙��
𝑙
0 𝑑𝑥  (9) 

where only electric load is considered to obtain the vector 𝑔̅𝑢𝜙as 
𝑔̅𝑢𝜙 = {0 −𝑞�4𝑙 }𝑇  (10) 

with 
𝑞�4𝑙 = 𝑏�𝐷𝑧𝑁𝛿𝑙𝑛∅ − 𝐷𝑧0𝛿𝑙1 + 𝑞𝑙𝑖𝛿𝑙𝑙𝑖�  (11) 

𝐷�  is the generalized stiffness matrix of the beam, 𝑔𝜃2
𝑗 ,𝑔𝜃1

𝑗 ,𝑔𝜃0
𝑗  are the generalized stress-temperature 

coefficient matrices. 
The generalised strain, 𝜀 ̅and the displacement vector, 𝑢�2 are interpolated as 

𝜀̅ = 𝐵�𝑑𝑒 ,     𝑢�2 = 𝐵�𝑚2𝑑
𝑒 (12) 

Here 𝐵�  and 𝐵�𝑚2are strain displacement and displacement interpolation matrices respectively. 
Substituting the expressions of 𝜃𝑗 ,𝜀 ̅and 𝑢�2 from Eqs. (6) and (12) respectively, we get 
𝑇𝑒 = ∫ �𝛿𝑑𝑒𝑇𝐵�𝑇 �𝐷�𝐵�𝑑𝑒 + 𝑔𝜃2

𝑗 𝜕2𝑁�
𝜕𝑥2

𝜃𝑗𝑒 + 𝑔𝜃1
𝑗 𝜕𝑁�

𝜕𝑥
𝜃𝑗𝑒 + 𝑔𝜃0

𝑗 𝑁�𝜃𝑗𝑒� − 𝛿𝑑𝑒𝑇𝐵�𝑚2
𝑇 �𝑔̅𝑢𝜙��

𝑙
0 𝑑𝑥 =

∫ 𝛿𝑑𝑒𝑇 �𝐵�𝑇𝐷�𝐵�𝑑𝑒 + 𝐵�𝑇 �𝑔𝜃2
𝑗 𝜕2𝑁�

𝜕𝑥2
+ 𝑔𝜃1

𝑗 𝜕𝑁�
𝜕𝑥

+ 𝑔𝜃0
𝑗 𝑁��𝜃𝑗𝑒 − 𝐵�𝑚2

𝑇 𝑔̅𝑢𝜙�
𝑙
0 𝑑𝑥 = 𝛿𝑑𝑒𝑇[𝐾𝑒𝑑𝑒 +

𝑃�𝜃𝑒 − 𝑃�𝑒]  

(13) 

where 𝐾𝑒, 𝑃�𝑒 and 𝑃�𝜃𝑒 are given by 

𝐾𝑒 = ∫ 𝐵�𝑇𝐷�𝐵�𝑑𝑥𝑙
0 , 𝑃�𝑒 = ∫ 𝐵�𝑚2

𝑇 𝑔̅𝑢𝜙𝑑𝑥
𝑙
0 ,   𝑃�𝜃𝑒 = �∫ 𝐵�𝑇 �𝑔𝜃2

𝑗 𝜕2𝑁�
𝜕𝑥2

+ 𝑔𝜃1
𝑗 𝜕𝑁�

𝜕𝑥
+ 𝑔𝜃0

𝑗 𝑁�� 𝑑𝑥𝑙
0 �𝜃𝑗𝑒 (14) 

Thus the general equation after integration is obtained as: 
𝐾𝑒𝑑𝑒 = 𝑃�𝑒 − 𝑃�𝜃𝑒  (15) 

where 
𝑃�𝑒 = �0 0 𝑎18𝑞�𝜙𝑙

𝑒
�
𝑇
  (16) 

with 
𝑞�𝜙𝑙

𝑒
= �𝑞�𝜙1

𝑙𝑒 𝑞�𝜙2
𝑙𝑒 �

𝑇
,        𝑎18 = 𝑏 ∫ 𝑁�𝑇𝑁�𝑑𝑥𝑙

0   (17) 

3. Results and discussion 

3.1. Validation 
The present 1D-FE formulation of zigzag theory is first validated for buckling response under thermal 
loading with simply supported hybrid piezoelectric beam of Ref. [3]. Beam configurations (b) and (c) 
and pre-buckling load case 1 of Ref. [3] is considered for validation. The results are compared (Table-
1) for span to thickness ratio 𝑆 = 𝑙 ℎ⁄ = 20. 

Critical temperature, 𝜃̅𝑐𝑟 for fundamental buckling mode, 𝑛 = 1 

S Beam b Beam c 
1D FE Ref [3] % error 1D FE Ref [3] % error 

20 17.415 16.9378 2.817 51.550 49.5434 4.050 
Table 1: Validation of critical temperature, 𝜃̅𝑐𝑟 with simply supported beams of Ref. [3] 

The %age of difference is 4.05 which shows the correctness of the present (1D-FE) formulation. 
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3.2. Numerical Example 
The hybrid beams (d) and (e) [9] with composite and sandwich substrate respectively are considered 
for the analysis. Piezoelectric layers (PZT-5A) of thicknesses ℎ𝑝 are bonded at the top and bottom 
surfaces of the substrate in both the beams. ℎ𝑠 is the thickness of elastic substrate and ℎ is the total 
beam thickness. +z is considered to be the poling direction for piezoelectric layers. The surfaces of the 
substrate where PZT-5A layers are bonded are grounded. The composite substrate (d) has four 
numbers of 0.25ℎ𝑠 thick graphite epoxy layers with layup[0𝜊 90𝜊 90𝜊 0𝜊⁄⁄⁄ ]. The sandwich substrate 
(e) has three layers, an intermediate soft core and top-bottom face sheets of 
thicknesses 0.08ℎ𝑠 0.84ℎ𝑠 0.08ℎ𝑠⁄⁄ . ℎ𝑝 is varied from 0.1ℎ  to 0.3ℎ keeping ℎ as constant . 

 

 

 
Figure 1: Variation of critical temperature 𝜃̅𝑐𝑟 with thickness ratio of piezoelectric layers 

The following pre-buckling load case is considered 
1. Uniform temperature rise of the beam with zero potential at top and bottom surfaces and 

immovable beam ends. The critical temperature for buckling is expressed as 𝜃𝑐𝑟 which is non-
dimensionalised as 𝜃̅𝑐𝑟 = 𝛼0𝜃𝑐𝑟𝑆2, where 𝑆 = 𝑙 ℎ⁄  and  𝛼0 is taken as  22.5 × 10−6𝐾−1. 



5

1234567890‘’“”

ICCRME-2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 404 (2018) 012018 doi:10.1088/1757-899X/404/1/012018

The critical buckling temperatures are obtained for hybrid beams under simply supported boundary 
conditions. The converged 1D-FE results are obtained using forty elements of equal size. The 1D-FE 
results are compared with 2D-FE (ABAQUS) results where the beam is first analyzed in heat transfer 
step which is then followed by buckling step. The temperature distribution as obtained in heat transfer 
step is used as a predefined field in the next step of linear perturbation buckling procedure to obtain 
the buckling response under thermal load. The beam has been discretized into more than 600 elements 
for span to thickness ratio 𝑆 = 10. This number increases substantially for larger span to thickness 
ratios of hybrid beam. 
The variation of critical buckling temperature for first three buckling modes (𝑛 = 1,2,3) with 
thickness ratio of piezoelectric layer, ℎ𝑝 ℎ⁄  for both the hybrid beams is shown in Fig.1.The results are 
presented for different span to thickness ratios, S. The critical buckling temperature increases as the 
beams are made thinner for the same span length. It may be observed that for the same value of S there 
is substantial increase in values of critical buckling temperature for higher buckling modes.  
The critical temperature, 𝜃̅𝑐𝑟 decreases with increase in thickness ratio of piezoelectric layers for beam 
d as well as beam e. 𝜃̅𝑐𝑟 is maximum for ℎ𝑝 = 0.1ℎ and exponentially reduces as the thickness of 
piezoelectric layer increases and become 0.3ℎ. Further the critical temperature corresponding to the 
fundamental buckling mode for beam e is higher in comparison to beam d for all the thickness ratios 
(ℎ𝑝 ℎ⁄ ) considered. The 1D-FE and 2D-FE plots are in good agreement. The critical temperatures are 
obtained ignoring the effect of pre-buckling deformation. 

4. Conclusions 
The thickness of piezoelectric layers in smart beams is significant as it results in different buckling 
response under thermal loading. A 1D-FE model to assess the effect of thicknesses of piezoelectric 
layers on thermal buckling response of a hybrid beam is presented. The results are obtained for simply 
supported boundary conditions. The critical temperature decreases with increase in thickness ratio of 
piezoelectric layers for both hybrid composite and sandwich beams. For all the thickness ratios, the 
critical temperature corresponding to the fundamental buckling mode is higher for sandwich beam in 
comparison to the composite beam. These observations may be used as a basis for experimental 
investigation and design for composite and sandwich hybrid structures. 
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