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Abstract. The paper presents a theoretical study concerning the possibility of using a 

pneumatic actuation system for a piece of elbow rehabilitation equipment with two degrees of 

freedom. For this purpose the design and calculation of a rotation module for each movement 

performed by the equipment is necessary: flexion-extension and pronation-supination. 

Construction of the modules implies a force and torque analysis leading to the correct selection 

of the pneumatic muscles, able to perform the desired movements. The static analysis of the 

rotation module can be done in two different modalities. The first modality takes into account 

the influence of neuronal control quantities on the forces developed by the two pneumatic 

muscles, while the second one aims to determine forces based on the technical data and load 

pressures of the pneumatic muscles. The dynamic analysis of the rotation module starts from 

two equations of the dynamic model, where first taken into consideration are: J  – the moment 

of inertia, ω – angular velocity, T  – total moment in the joint and Tg – gravitational moment; 

then, for a simplified model, the term Tg is neglected. The exhaustive calculations carried out 

during the dynamic analysis yielded satisfying results. Further presented are variation graphs of 

pressure Δp and rotation angle θ versus time, respectively. 

1. Introduction 

The proposed equipment for the rehabilitation of the elbow has two rotational degrees of freedom 

placed perpendicularly, meaning ensures two movements: flexion-extension and pronation-supination, 

motions that are performed separately and consequently are addressed separately in this paper. 

Each rotation module is driven by a couple of pneumatic muscles, arranged in an antagonistic 

connection. The neutral position is achieved when both muscles are fed the same pressure; in order for 

the movement to take place one muscle is compressed, while the other one is relaxed. The 

transmission of motion between actuators and joints is made by means of steel cables. That causes the 

rotation of a shaft and also of a support where the hand is placed.  

2. Calculation of the rotation modules 

2.1. Calculation of the rotation module for flexion-extension  

A force and torque analysis is required for designing the flexion-extension rotation module. 

Dimensioning the force exerted by the biceps is based on the schematic shown in figure 1. 

The notations refer to: 

 Force F is equal to the sum of the weight of a hand-held object of e.g. 2 kg mass and the 

weight of the hand. In this case, force F = (2 + 0.46)·9.81 = 24.13 N. 
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 Force G is the weight of the forearm: G = 1.2 · 9.81 = 11.77 N. 

 Fm is the force that the biceps must exert in order to achieve the flexion-extension movement. 

 

Figure 1. Display of forces. 

In this case, the equilibrium equation of torques in O joint is: 

   ;0 OT  0coscos  OAFODGOCF m         (1) 

Hence force Fm is: 
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In the case of elbow rehabilitation equipment, the forces F and Fm are not present, therefore the 

value of the torque in joint O can be calculated as follows: 

     coscos'' max  OO MODGT          (3) 

where G’ is the sum of the weights of the hand, of the forearm and of the hand support 

(G’=(0.46+1.2+3)∙9.81 = 45.71 N), and OD’ is the distance between the rotation axis and the point of 

application of force G’ (OD’ = 0.185 m). 

Thus, for the data in Figure 1, the torque in O joint is: 

 cos45.8cos)185,071.45( OT [N∙m] 

where TOmax=-8.45 Nm. The (-) sign has been assigned conventionally, because the significant torque 

in the joint has to be overcome by the actuation system. 

According to [1], the medium torque in the elbow joint for flexion is of approximately 7Nm and for 

extension 10 times smaller. For dimensioning the rotation module for flexion-extension a value of 8.45 

Nm will be taken into consideration. 

In this case, the rotation corresponding to the flexion-extension of the forearm is obtained by means 

of two pneumatic muscles in a push-pull relationship: as one muscle becomes expands its length, the 

other one shortens and vice versa. 

Figure 2 shows the working principle of the pneumatic muscles denoted M1 and M2. 

 

Figure 2. Flexion motion. 
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The upper ends of the pneumatic muscles are connected by a steel wire, drawn over a pulley and 

fixed in a specially designed structure, the winding angle of the wire over the pulley being 270°. 

 

Figure 3. The winding scheme of the wires. 

For flexion-extension two DMSP-20-300N-RM-CR pneumatic muscles were manufactured by 

Festo, Germany were selected, with an interior diameter of 20 mm and initial length of 300 mm. The 

maximum axial contraction of these muscles, when fed compressed air at a pressure of 6 bar, is 

ΔLmax=60 mm (20% of initial length). The MuscleSim v. 2.0.1.5 programme provided by Festo 

calculates the values of the forces based on to the feed pressure and specific axial contraction. 

In this case, for a 3 bar pressure and a 30 mm stroke performed by the pneumatic muscle, meaning 

a 10% specific axial contraction, the developed force is of 287.8 N. 

Initially, the feed pressure of the two pneumatic muscles is 0 bar. In order to obtain a rotation, the 

first step is to feed half of the maximum work pressure to both pneumatic muscles simultaneously. 

When p0=pmax/2, the axial contraction of the two muscles is ΔLmax/2, the stroke performed by the lower 

ends of the pneumatic muscles being limited by a fixed stop. 

The specific axial contraction of a muscle, ε, is defined as follows: 

 

    100



i

i

L

LL
  [%] = 100



iL

L
[%]                   (4) 

 

where Li is the initial length of the muscle (when p=0 bar) and L is the length of the muscle fed at a 

certain pressure p. 

The maximum specific axial contraction εmax of a pneumatic muscle is: 

 

     100max
max 




iL

L
 [%]                (5) 

 

where ΔLmax is the maximum stroke carried out by the free end of the muscle when fed maximum 

pressure.    

Thus both pneumatic muscles have length L0 and their specific axial contraction ε0, will be: 

 

    [%]100
2
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max
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
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ii L

L

L

L
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In order to carry out a rotation by a certain angle θ one muscle will be fed compressed air at a 

pressure p1 = p0 + Δp and the other one will relax, the pressure being p2 = p0 – Δp. Thus the following 

modifications will take place: the fed muscle will shorten to a length L1 = L0 – ΔL1, and the relaxed 

one will extend to a length L2 = L0 + ΔL2. 

When joint rotation reaches max, the specific axial contraction of the two muscles becomes: 
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where R is the radius of the pulley over which the wire affixed to the free end of the pneumatic 

muscles is drawn. 

By means of equations (6) and (7) the radius of the pulley can be calculated, knowing that the 

maximum angle of rotation, max = π/2 = 90º. Thus, 

 

     1.19
60max 






L
R  mm                  (9) 

2.1.1. Static analysis of the rotation module for flexion-extension  

There are two approaches to the static analysis of the rotation module. The first approach considers, 

similarly to the biological model, the influence of neuronal control quantities on the forces developed 

by the two pneumatic muscles, while the second one measures the forces based on the technical data 

and load pressures of the pneumatic muscles. 

In the first approach, the general equation that describes the evolution of the static force developed 

by a pneumatic muscle is: 

     )1(
max

max



 FuF     (10) 

 

where Fmax is the maximum force exerted by the muscle when the axial contraction is zero and u is a  

neuronal control quantity, with values between 0 si 1 (0 ≤ u ≤ 1) [2]. Nerve impulses (control 

quantities u) are generated by alpha motor neurons causing contractions of the muscle fibres and 

implicitly force and movement. The antagonistic relationship of the two pneumatic muscles helps 

developing a torque within the joint, as follows: 

 

     )( 21 FFRT          (11) 

 

where F1 and F2 are the forces developed by the two pneumatic muscles (agonistic force and 

antagonistic force). 

Upon applying equation (10) for each force: 

     )1(
max

1
max11




 FuF            (12) 

 

       

)
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1(
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max22



 FuF        (13) 

where u1 + u2 =1. 

Introducing formulas (12) and (13) into equation (11), by means of equation (6) to (8) torque T 

becomes: 

   
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According to [3], if: 
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then 

      )()( 212211 uuKuuKT       (17) 

 

 

When T=0, the joint equilibrium position is: 

 

         
)(

)(

212

211

uuK

uuK
ech




        (18) 

 

If an external force is exerted on the rotation module, and it reaches a new position θeq ± Δθ, the 

system tends to return to its original position, due to a return torque Tret [3]: 

 

            kuuKTret )( 212        (19) 

 

where k is the torsional rigidity of the joint. 

 

     )212 ( uuK
d

dT
k 


       (20) 

 

The maximum angle of rotation θ is: 

 

     
R
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

)( 0max
max


        (21) 

 

In the case discussed in this paper the data required for calculations are: εmax=20%; ΔLmax=60 mm; 

ε0=10%; Fmax=1552.9N. The maximum angle of rotation is θmax = ± π/2. 

Further, by means of equations (15) and (16) there follows: 
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When u1 = 1 and u2 = 0 or u1 = 0 and u2 = 1, i.e. when one muscle is maximum contracted and the 

other one is maximum relaxed, the torque reaches its maximum values too: 

 

      2121max )01()01()( KKKKT      (22) 

 

Further on, certain values of Tmax(θ) are calculated: 
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These values are presented in figure 4. 

Another important aspect to be included by the study of this joint is the “gravitational test”, which 

takes into account the influence of weight of the moving masses. Figure 5 shows the schematic 

underlying the calculations, wherein G is the sum of the weights of the hand, of the forearm and of the 

hand support (G=(0.46+1.2+3)∙9.81 = 45.71 N), and a is the distance between the rotation axis and the 

point of application of force G (a = 0.185 m). 

In this case, the gravitational moment is: 

 

   cos45.8cos)185.071.45( gT [Nm] 

 

 

 

 

Figure 4. Maximum torque 

variation depending on the rotation 

angle. 

 Figure 5. The effect of the weight 

of the moving masses on the 

rotation module. 

Figure 6 shows the variation of the total torque in the rotation module. 

 

 

Figure 6. The variation of the total torque in rotation module. 
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The second approach takes into consideration a series of technical data of the pneumatic muscle, 

the static force, according to [4] and [5] being: 

           ])1([
4

22 bcadpF  


                        (23) 

where      
2

min )(tan

3


a        (24) 

      
2

min )(sin

1


b        (25) 

 

 p is the supply pressure of the pneumatic muscle; 

 d is the interior diameter of the pneumatic muscle, when relaxed; 

 α is the angle of the pneumatic muscle’s tissue; 

 c is an experimental coefficient, c=1.5. 

According to [6]: 

         













2

2
2

)(cos1

1)(cos3

4 


dpF         (26) 

The limit values of angle α angle are: 

 αmax, when the force is equal to 0  αmax = 54.7º.  

 αmin, when the force is maximum; for DMSP-20-300N muscle the maximum force is 1552.9 

N,  αmin = 24.94º. 

The values of a and b coefficients can be calculated by means of formulas (24) and (26) above: a = 

13.87 and b = 5.62. Subsequently the force can be calculated: 

 

]62.5)5.11(87.13[ 2  pF          (27) 

 

The torque developed in the rotation module joint is: 

 

 )(83.15)(52.24 2121 ppppT       (28) 

 

or, upon replacing K1 = 24.52 and K2 = 15.83: 

 

 )()( 212211 ppKppKT        (29) 

 

When T = 0 the equilibrium position is: 
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The torsional rigidity of the joint, k, is: 

 

)( 212 ppK
d

dT
k 


        (31) 

 

The maximum angle of rotation is θmax = ± π/2. 
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The maximum values of the torque are obtained when the feed pressures are either p1 = 6 bar and 

p2 = 0 bar or p1 = 0 bar and p2 = 6 bar, meaning a maximum contraction of one muscle and a 

complete relaxation of the other. 

In this case the maximum torque is: 

 
1

21
1

21max 10)(610])06()06([)(    KKKKT      (32) 

 

AS pressure is measured in bar and the two coefficients K1 and K2 in cm3, it was necessary to 

introduce the factor 10-1. 

Further the maximum torque Tmax(θ) is calculated for different values of the angle of rotation. 
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It should be noted that the values are almost identical with the ones obtained by the first method, 

thus confirming the correctness of the data and also of the graphs presented in figure 4 and figure 6. 

2.1.2. Dynamic analysis of the rotation module for flexion-extension  

Starting from the notations used in figure 5, the equations of the dynamic model are: 

       












gTT
dt

d
J





        (33) 

where J  – moment of inertia, ω – angular velocity, T  – total torque in the joint and Tg – gravitational 

moment. 

The last equation can be expanded as follows: 

     cos45.822 021  pKpKJ        (34) 

where 
2

2

dt

d 
  . 

According to the parallel axis theorem (Huygens-Steiner theorem), the moment of inertia of 

moving masses with respect to the axis of the pulley of the rotation module is: 

    222 )2(
12

1
amamamJJ cm          (35) 

where Jcm is the moment of inertia of the system with respect to an axis that passes through its centre 

of mass; m is the mass of the assembly and a is the distance between the centre of mass and the axis of 

the pulley. 

For m = 4.66 kg and a = 0.185 m, the moments of inertia are Jcm=0.05316 kg∙m2 and J=0.2126 

kg∙m2, respectively. 

Starting from (34), further on a simplified dynamic model is shown, where Tg is neglected: 

 

  383.15252.2422126.0 p  

or 

)(98.942126.0 pf    
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with ppf  04.49)(  

The relationship above is an inhomogeneous differential equation, whose overall solution is the 

sum of the solution of the homogeneous equation and a particular solution. 

The solution of the homogeneous differential equation is: 

098.942126.0    

)13.21sin()13.21cos()( 21 tCtCt   

The particular solution: 

bpapf  )(  

apf  )( ; 0)( pf  

Upon replacing these terms in the first equation there results: 
pbpa  04.49)(98.9402126.0  

where a=0.516 and b=0. 

Thus, the overall solution of the differential equation is: 

ptCtCt  516.0)13.21sin()13.21cos()( 21  

Δp is the symmetrical pressure by that the muscles are charged and released, respectively and can be 

expressed as a linear function of time: 

      Δp=A∙t         (36) 

where A can have different values. For A = 3; A = 1; A = 0.5 and A = -1, figures 7 and 8 show the 

variation graphs of the pressure Δp and of the rotation angle θ versus time, respectively. 

 

 

 

 

Figure 7. Variation of pressure Δp vs time.  Figure 8. Variation of rotation angle θ vs 

time. 

2.2. Calculation of the rotation module for pronation-supination movements 

Identical to flexion-extension, pronation-supination is achieved by means of two pneumatic muscles 

working one against the other, in this case the interior diameter of the muscle being 10 mm. 

 

 

Figure 9. Working principle of the pronation-supination module. 
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According to figure 9, the pneumatic muscles are initially pre-charged to p0 = pmax/2 (p0 = 3 bar). 

Therefore, the stroke performed is of 30 mm, their specific contractions are ε0= 10% and the force 

developed by each of them is of 25.1 N. The rotation takes place when their pressures vary 

antagonistically. 

Using equations (7) and (8) the axial contractions can be calculated and as above, and the radius of 

the pulley over which the wire affixed to the free ends of pneumatic muscles is drawn is 19.1 mm 

(according to (9)). 

2.2.1. Static analysis of the rotation module for pronation-supination  

The data required for static analysis are: max = 20%; ΔLmax = 60 mm; 0 = 10%; Fmax = 475.8 N. Thus 

the maximum angle of rotation, compared to the equilibrium position, is θmax=±π/2. 

The two coefficients, K1 and K2, can be calculated as follows: 
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The maximum moment in the joint occurs when u1 = 1 and u2 = 0 or u1 = 0 and u2 = 1. For the 

first situation, the maximum torque is: 

     89.254.4)01()01()( 2121max KKKKT     (37) 

Different values of maximum torques Tmax(θ) are calculated below: 
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Figure 10. Maximum torque variation 

versus the rotation angle. 

 Figure 11. The effect of the weight of the 

moving masses on the rotation module. 

The moving masses are those of the hand and forearm (0.46+1.2=1.66 kg); the distance between 

the point of application of the force to the rotation axis is 6 cm. The gravitational moment will be: 
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Figure 12 shows the variation of total torque in the rotation module joint. 

The static analysis also entails expressing the force of pneumatic muscles as in eqs. (2) to (26). 

Hence, 

 αmax is achieved when the force developed by the muscle is zero  αmax = 54.7º. 

 αmin is achieved when the force developed by the muscle is maximum. In this case the 

maximum force is 475.8 N  αmin = 23º. For this value, coefficients a and b are: a = 16.65 and 

b = 6.55. 

 

 

Figure 12. Variation of the total torque in the rotation module. 

  

The force and torque are expressed below:     
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Neglecting the terms ε2 and introducing the formulas for ε1 and ε2 there results: 

 )(07.5)(15.7 2121 ppppT  

If K1 = 7.15 and K2 = 5.07, then:  )()( 212211 ppKppKT  

The equilibrium position of the joint is achieved when T = 0: 
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Calculations of the maximum torque Tmax(θ) are as follows: 
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These values are very close to the ones obtained in the first approach. After converting the MIMO 

system into SISO, the torque in the joint becomes: 

 

         021 22 pKpKT        (40) 

 

and the equilibrium position (when T=0) is: 
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The torsional rigidity: 
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2.2.2. Dynamic analysis of the rotation module for pronation-supination  

Starting from equation (40) and from the value of the gravitational moment sin977.0 gT , the 

equations of the dynamic model are: 

    















sin977.022 021 pKpKJ 


         (42) 

 

The last equations can also be written as: 

 

    02sin977.02 102  pKpKJ       (43) 

 

With the notations in figure 11 the moment of inertia of the moving masses with respect to the axis 

of the pulley of the rotation module is: 

    222 )2(
12

1
amamamJJ cm        (44) 

 

For m = 1.66 kg and a = 0.06 m, the moment of inertia is J=0.007968 kg∙m2 

The equation of the simplified dynamic model, neglecting Tg is: 

015.7207.52007968.0 0  pp   

or )(42.30007968.0 pf    

where f(Δp)=14.3∙Δp 

The relationship above is an inhomogeneous differential equation, whose overall solution is the 

sum of the solution of the homogeneous equation and a particular solution. 

The solution of the homogeneous differential equation is: 042.30007968.0    

)78.61sin()78.61cos()( 21 tCtCt   

The particular solution is: bpapf  )( ; apf  )( ; 0)( pf  

The main equation will be: pbp  3.14)(42.300007968.0   

meaning a = 0.47 and b = 0. 

The overall solution of differential equation is:  

ptCtCt  47.0)78.61sin()78.61cos()( 21  
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Δp is the symmetrical pressure that charges or releases the muscles and can be expressed as a linear 

function of time: 

      Δp=A∙t         (45) 

 

where A can have different values. For A = 3; A = 1; A = 0.5 and A = -1, graphs showing the variation 

of pressure Δp versus time (figure 7) and the variation of rotation angle θ versus time (figure 13) are 

presented. 

 
Figure 13. Variation of rotation angle θ versus time. 

3. Conclusions 

This paper discusses a theoretical study of two rotation modules of an elbow rehabilitation device 

equipped with a pneumatic actuation system. As the working principle of the pneumatic muscles is the 

same in both cases, the same methods were used in calculations.  

The static analysis was conducted by two different approaches; the results were almost identical, 

which justifies using the two pneumatic muscles, of 20 mm interior diameter and 300 mm initial 

length for flexion extension- and of 10 mm interior diameter and 300 mm initial length for pronation-

supination. The actuation system of each rotation module implies two feed pressures p1 and p2 as 

inputs, the outputs being the static moment T, the angle of rotation θ and the torsional rigidity k. For 

an accurate value of the rotation angle θ, the following quantities were used: Δp as input (the pressure 

by that symmetrically one muscle is charged and the other one released) and the rotation angle θ as 

output. 

The dynamic analysis implied solving a differential equation in both cases, what led to the fact that 

the symmetrical pressure by that the muscles are charged and released, respectively can be expressed 

as a linear function of time and variation graphs of the pressure Δp and of the rotation angle θ versus 

time can be plotted. 

In conclusion, the selected muscles are able to perform the desired movements, and consequently 

will be used in the construction of the equipment. 
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