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Abstract. In a tribological system containing protective coatings, the knowledge of stresses 

generated in both the hard layer and the substrate are essential to the design of the tribological 

elements. The stress field due to the contact load is required to assess the coating performance 

and to guide the coating design. Rough contact analyses can only be performed numerically, 

but conventional techniques applied to layered solids may lead to very time-consuming 

simulations. The semi-analytical method for the analyses of contact stresses in a bilayered 

medium advanced in the companion paper is enhanced and applied to stress analyses in the 

layered body. The main difficulty in applying FFT-based spectral analysis to the study of 

subsurface stresses consists in the treatment of the frequency response function (FRF) at the 

origin of the frequency domain, where the FRF may be singular. As the FRF is integrable in 

the neighbourhood of the origin, the discrete sample corresponding to the patch centred in 

origin is substituted by the average value over the latter patch. The conditions of stress 

continuity at the interface between the protective layer and the substrate are verified. The 

influence of both coating thickness and dissimilarity in the elastic properties between the 

coating and the substrate, on the intensity of the maximum von Mises equivalent stress, is 

assessed. The numerical examples prove the method ability to tackle contact scenarios 

involving protective coatings and to assist the design of competent tribological elements. 

1.  Introduction 

The competent design of machine elements may involve protective coatings or layers that provide high 

wear resistance and long fatigue life. The knowledge of stresses arising in the coated bodies under 

contact load is of paramount importance for predicting the performance and reliability of the coated 

system.  

The analysis of elastic contacts involving layered solids requires the use of numerical methods, 

especially when realistic and technologically significant three-dimensional configurations are 

considered, involving contacting surfaces with complex shapes, such as in rough contact problems. In 

the latter case, meshes with very large numbers of elements lead to high computational costs that are 

unsuitable for practical purposes.  

The use of integral transforms [1-4] reduces the number of spatial dimensions in the numerical 

treatment of layered solids. The discrete Fourier transform, which can be efficiently evaluated by 
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means of the fast Fourier transform (FFT) algorithm, further reduces the computational cost. Ju and 

Farris [5] pioneered the application of FFT to contact mechanics. They calculated stresses generated 

by a complete contact of 2D rough surfaces and solved a partial contact problem for a pair of smooth 

2D surfaces. Nogi and Kato [6] later combined the FFT with the conjugate gradient method for 

solving linear systems of equations, resulting in a fast numerical technique for rough contact problems 

involving both homogenous and layered solids. The main issue with the FFT-based methods is the 

implicit problem periodization, which introduces an error referred to as the periodicity error. Different 

authors proposed techniques to circumvent this error: Ju and Farris [5] employed a domain-extension, 

Ai and Sawamiphakdi [7] decomposed the contact traction into a smooth and a zero-mean fluctuating 

part, whereas Polonsky and Keer [8] constructed a hybrid algorithm by adding a special correction 

term computed with a multi-level multi-summation technique. An important breakthrough was 

achieved by these authors [9] with the DCFFT technique, combining the discrete convolution theorem 

with the processes of zero padding and wrap-around order. The DCFFT method avoids the periodicity 

error associated with FFT at a cost of only doubling, in every direction, the computational domain of 

the contact problem. Liu and Wang [10] later applied the DCFFT technique to the study of contact 

stress fields caused by surface tractions, in which the shear tractions were assumed proportional to 

pressure. Wang et al. [11] investigated the partial slip contact of coated bodies, by combining the 

DCFFT with a numerical solution to the Cattaneo-Mindlin problem. The problem was recently 

revisited by Yu et al. [12], who derived the analytical frequency response functions (FRFs) for stresses 

in multilayered materials in a recurrence format. 

The goal of this paper is to extend the algorithm for displacement computation in a layered medium 

proposed in the companion paper, and to perform a stress state analysis in the spherical contact 

involving a bilayered half-space. To this end, the matter of the singularity of the FRF at the origin of 

the frequency domain must be addressed. 

2.  Stress field in a layered elastic half-space 

A bilayered material with a single layer coating on top of a half-space is considered. Both the layer 

and the half-space are assumed linear elastic, homogenous and isotropic, with the Young’s modulus 

iE  and the Poisson’s ratio i , where 1i   refers to the layer and 2i   to the half-space. The layer 

thickness is denoted by h . The interface is perfectly bonded without slip. The problem is reported to 

Cartezian coordinates x , y  and iz  , 1,2i  , with the origin of the z -axis for each layer located on its 

top. The stresses and displacements are consequently expressed as functions of x , y  and 1z   in the 

layer, and of x , y  and 2z   in the half-space. In order to solve the quasi-static normal contact problem, 

the solution for arbitrary boundary loading ( , )p x y  is required. On the surface (i.e., at 1 0z  ), the 

normal and tangential tractions must obey the boundary conditions corresponding to a frictionless 

contact problem under normal load, (equations (1, 2):  

 
(1) ( , ,0) ( , )zz x y p x y   ; (1) 

 
(1) ( , ,0) 0zx x y  ;  

(1) ( , ,0) 0zy x y  , (2) 

whereas the continuity condition of tractions and displacements at the interface yields, equations (2-6): 

 
(1) (2)( , , ) ( , ,0)zz zzx y h x y  ; (3) 

 
(1) (2)( , , ) ( , ,0)zx zxx y h x y  ; (4) 

 
(1) (2)( , , ) ( , ,0)zy zyx y h x y  ; (5) 
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 (1) (2)( , , ) ( , ,0), , , .i iu x y h u x y i x y z   (6) 

The superscripts (1) and (2) refer to the layer and the half-space, respectively. Additional 

constraints yield from the condition that, at infinity in the half-space (i.e., for large 2z ), the solution 

must remain bounded, equations (7, 8): 

 (2) ( , , ) 0, , ,iu x y i x y z   ; (7) 

 (2) ( , , ) 0, , , ,ij x y i j x y z    . (8) 

The stresses and displacements in the layered system were expressed in the literature [6,10,12] as 

functions of the Papkovich-Neuber potentials, by taking their double Fourier transform with respect to 

the x  and y , and by imposing the conditions (1) - (8). The closed form expression of the six tensor 

components derived in the Fourier transform domain (i.e., the frequency response functions), for both 

the layer and the substrate, are given in Appendix. 

3.  Algorithm description 

The semi-analytical method employed in the companion paper for displacement calculation is 

extended to allow for the computation of stresses in the layered elastic half-space. Stresses induced by 

a pressure distribution ( , ,0)p x y  can be expressed as convolution products along the tangential 

directions x  and y , (equation (9):  

 ( , , ) ( , ,0) ( , , )ij k ij kx y z p x y g x y z d d    
 

 

    , , , , ,i j x y z   1,2k  ,  (9) 

in which ijg  denotes the Green’s functions, i.e. the analytical relationship between the elastic response 

(stress) and the Dirac excitation (a unit point force compressing the surface). The Green’s functions is 

only available in the frequency domain as the FRF, therefore the stress analysis is performed by the 

same technique used for displacement computation in the companion paper. The contact problem 

involving layered materials was solved by replacing the continuous pressure distribution with a 

discrete set of pressure elements, while the boundary conditions were imposed at a discrete number of 

matching points. The displacement computation was performed for the matching points in the 

frequency domain with the aid of the discrete convolution theorem. Capitalizing on the fact that 

stresses can also be expressed as the convolution product between the surface tractions and the 

Green’s functions for stresses, which are known in the frequency domain only, the same technique can 

be applied for stress calculation. An additional difficulty arises as the displacement computed with the 

method proposed in the companion paper is undetermined to the extent of an arbitrary constant (i.e. 

only relative displacements of the surface points are known). Whereas this undetermination does not 

obstruct the resolution of the contact problem, it is clearly that the stress analysis in the elastic body 

requires absolute stress values in order to predict plastic yield and/or crack nucleation. The source of 

the undetermination is the discrete value of the FRF corresponding to origin, which cannot be 

computed from the closed-form expressions as the FRFs as the latters are singular in that point.  

Nogi and Kato [6] indicated that, although the FRFs for displacement and stresses may be singular 

in origin, they are integrable everywhere. Consequently, the integrals of the FRFs over a domain 

centred in origin may be computed numerically. The method applied in this paper follows the 

suggestion given in [6], to replace the missing discrete sample with the average value of the FRF over 

the element centred in origin.   

Let g  denote any of the FRFs expressing the stresses induced in a layered elastic half-space. 

Surface discretization in the time / space domain is performed with a data interval of x  and y  along 

directions of x  and y , respectively, leading to a series with x yN N  terms. In the frequency domain, 
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discretization implies that g  is assumed constant in each elementary spectral element of sides lengths 

2 ( )x xN   and 2 ( )y yN  , and equal to the value of g  computed in the centre of the element. By 

exception, for the spectral element centred in origin of the frequency domain, the representative value 

is computed as follows, (equation (10): 

 

( , )

ˆ (0,0)
2 2

y y x x

y y x x

N N

N N

x x y y

g x y dxdy

g

N N

 

 

 

 

 
 



 

 

, (10) 

where the integral is calculated numerically. In this manner, the undetermination is lifted and the stress 

field inside the layered material can be computed in layers of constant depth iz   constant. For every 

layer, each of the six stress tensor components is expressed as a convolution product that can be 

efficiently computed in the frequency domain. In this manner, stresses are obtained in the same 

manner as displacement, in a reunion of points that mirrors in depth the surface representative points 

used in the resolution of the contact problem.  

Whereas the grid should be uniform along the convolution directions, as required by the DCFFT 

technique, this is not a constraint for depth discretization. Consequently, the grid along the z -axis can 

be refined in regions where important stress gradients are anticipated or where stresses are of 

particular interest. 

4.  Numerical simulations and results 

The proposed numerical simulation technique can compute the stress state for arbitrary boundary 

loading. However, for comparison purposes, the present stress analysis is performed in the frictionless, 

quasi-static contact of a rigid sphere pressed against a bilayered halfspace. The elastic medium 

consists in a semi-infinite substrate of elastic parameters 1E , 1 , and a perfectly bonded elastically 

dissimilar layer of parameters 2E , 2 . The Hertz contact for the homogenous half-space (i.e., when 

1 2E E  and 1 2  ) is considered as reference. To this end, the following parameters are kept 

constant during the simulations: the normal load, the contact geometry, the Young modulus of the 

substrate 2E , the Poisson’s ratios for both the coating and the substrate ( 1 2 0.3   ), whereas the 

Young modulus of the coating 1E  and the coating thickness h  are varied. The Hertz contact model 

yields the contact radius Ha  and the central maximum pressure Hp , which are used as normalizers for 

spatial coordinates and for stresses, respectively.  

The target computational domain was chosen as a cuboid of side lengths 4 4 2H H Ha a a   meshed 

with 128 128 128   grids. It should be noted that, according to the proposed method, the influence 

coefficients computation is performed in a domain 16 times larger in each tangential direction, 

consequently 
2 316 128  different influence coefficients need to be computed. Nonetheless, each 

contact simulation was performed in less than ten minutes on a 4 core 3.2GHz CPU, whereas the 

memory utilization did not exceed 8 gigabytes of RAM. The value of the frequency response function 

at the origin in the frequency domain was computed numerically using the Matlab function “quad2d” 

with the default absolute and relative tolerances. No convergence issues were encountered during the 

simulations. In each point of the 3D mesh, the six stress tensor components were computed, as well as 

the von Mises equivalent stress, defined in relation to the stress tensor second invariant 2J : 

 2 2 2 2 2 2

2

1
3 ( ) ( ) ( ) 6( )

2
VM xx yy yy zz zz xx xy yz zxJ                     . (11) 
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 (a) 

 

 (b) 

 (c) 

 

 (d) 

 (e) 

 

 (f) 

Figure 1. Iso-contours of dimensionless von Mises equivalent stress VM Hp : (a) 1 2 1E E  ; 

(b) 1 2 1 4E E  , 1 4Hh a  ;  (c) 1 2 1 2E E  , 1Hh a  ;  (d) 1 2 2E E  , 1Hh a  ;  

(e) 1 2 2E E  , 3 2Hh a  ;  (f) 1 2 4E E  , 1 2Hh a  . Location of the maximum is denoted by 

the symbol “X”. 
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The latter parameter defines the yield surface and is used to predict plastic yield and/or crack 

nucleation inside the elastic medium, when its magnitude exceeds the yield strength of the elastic 

material. A set of numerical simulations was performed with varying dimensionless layer thickness 

Hh a  and varying coating elastic modulus. Typical results are presented in figure 1. The maximum 

intensity of von Mises equivalent stress VM Hp  for each contact simulation, as well as its location, 

are presented in table 1. Results in figures 1(a), (c) and (d) match well contours plots presented in the 

literature [2,12] for the same contact scenarios.  

 

Table 1. Influence of layer thickness and of the elastic modulus on the maximum equivalent stress 

 1 4Hh a   1 2Hh a   1Hh a   3 2Hh a   

1 2 1 4E E   0.427 (substrate) 0.3671 (substrate) 0.3346 (coating) 0.3073 (coating) 

1 2 1 2E E   0.534 (substrate) 0.4815 (substrate) 0.4569 (coating) 0.4336 (coating) 

1 2 1E E   0.6197 0.6197 0.6197 0.6197 

1 2 2E E   0.6952 (interface) 0.9896 (interface) 0.8533 (coating) 0.9125 (coating) 

1 2 4E E   1.069 (interface) 1.7298 (interface) 1.2328 (coating) 1.3922 (coating) 

 

The numerical simulations predict that the maximum stress differs significantly from the 

homogenous case. More compliant coatings (i.e., smaller 1 2E E ) lead to lower maximum stresses, 

located in the substrate when the coating is thin, or in the coating otherwise. The maximum stresses 

appear to decrease slightly with the increase in the layer thickness. On the other hand, when the 

coating is stiffer than the substrate (i.e., 1 2 1E E  ), there is an important increase in the maximum 

equivalent stress, which is located in the coating if the latter is thick, or near the interface when the 

coating is thin. Additional investigations may be needed for the optimal design of the coated system. 

In all cases, the iso-contours of the von Mises stress are discontinuous at the interface, and the gap 

increases with the dissimilarity in elastic properties between the coating and the substrate.  

 

 

 

 

Figure 2. The zz  stress component on the 

 z-axis, 1Hh a  . 

 Figure 3. The xx  stress component on the 

 z-axis, 1Hh a  . 

 

Figures 2 and 3 depict the stress components zz  and xx  on the contact axis. i.e. at 0x y  , for 

the case 1Hh a  . The figures suggests that, the stiffer the coating, the larger the maximum values of 
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both xx  and zz . It should be noted that zz  is continuous across the interface (i.e., at 1Hz a  ), in 

agreement with the continuity condition (3), whereas xx  is discontinuous. Figure 3 also suggests that, 

for coatings stiffer than the substrate, xx  becomes tensile near the interface, whereas in the other 

cases it is always compressive. A tensile stress may favor the propagation of cracks orthogonal to the 

interface at the base of the layer. The changing sign of the xx  stress component suggests that the 

stiffer coating behaves as a thin plate subjected to a combination of membrane and bending stresses.    

5.  Conclusions 

A semi-analytical simulation technique proposed in a companion paper is extended for stress analysis 

in the quasi-static contact of a rigid sphere pressed against a coated system consisting in a layer on top 

of an elastically dissimilar substrate. The method is based on closed-form expressions of the frequency 

response functions for stresses in a layered half-space derived in the literature by Fourier analysis.  

The discrete sample of the frequency response function corresponding to the elementary cell 

centred in origin is calculated numerically as the mean value of the function over the latter cell. This 

computation releases the singularity in origin, as the frequency response functions are integrable 

everywhere. With this modification, the algorithm for the computation of convolution products in the 

frequency domain can also be used for stress analysis, in which absolute rather than relative values are 

required to predict plastic yielding and/or crack nucleation. 

The computer program predictions match well existing results obtained by different methods. A 

preliminary study of the influence of layer thickness and of the dissimilarity in the elastic properties 

between the layer and the substrate is performed. It is found that the maximum intensity of the von 

Mises equivalent stress can vary significantly from the homogenous case when the layer is stiffer than 

the substrate. Moreover, when the coating is thin, it behaves like a plate subjected to bending, with 

tensile stresses arising at the base of the layer, which may favor crack propagation in the direction 

normal to the interface. 

From a computational point of view, the proposed simulation technique is fast enough to tackle the 

design of coated systems involving real microtopography of contacting surfaces. A more in-depth 

study of the optimal coating parameters leading to improved contact resistance is proposed for future 

analysis.  
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Appendix 

The following notations are used: 2 2m n   , 2 he   , 1 2G G  , 1( 1) ( 3 4 )       , 

1 21 4(1 ) [1 (3 4 )]        , 2 2 2 2[1 ( 4 ) ]R h           , where m  and n  are the 

coordinates in the frequency domain corresponding to x  and y , respectively, and iG  and i  are the 

shear moduli and the Poisson’s ratios for the layer ( 1i  ) and for the substrate ( 2i  ). The following 

coefficients are defined: 

 (1) 2 2

1

1
(1 2 )[1 (1 2 ) ] ( 4 )

2
A R h h      

 
        

 
; 

(2) (2) 0A C  ; (12) 

 (1) 2 2

1

1
(1 2 ) (1 2 ) ( 4 )

2
A R h h       

 
       

 
; (13) 

  (2)

2

1
(3 4 )(1 )[1 (1 2 )] ] ( 1)(1 2 )

2
A R h h                 ; (14) 

 (1) [1 (1 2 )] ]C h R     ; (1) (1 2 )C h R     ; (2) (1)(1 )C C   . (15) 

The frequency response functions of the pressure-induced six stress tensor components can then be 

expressed in the frequency domain, with 1i   for the layer and 2i   for the substrate:  

2 ( ) ( ) ( ) ( ) 2 ( ) ( )( , , ) ( ) 2 ( ) ( )i i i i i iz z z z z zi i i i i i

xx i i im n z m A e A e C e C e z m C e C e
        

       ; (16) 

 ( , , ) ( , , )yy i yy im n z n m z  ; (17) 

2 ( ) ( ) ( ) ( ) 2 ( ) ( )( , , ) ( ) 2 (1 )( ) ( )i i i i i iz z z z z zi i i i i i

zz i i im n z A e A e C e C e z C e C e
           

       ; (18) 

 
( ) ( ) ( ) ( )( , , ) ( ) ( )i i i iz z z zi i i i

xy i im n z mn A e A e z mn C e C e
     

     ; (19) 

 ( , , ) ( , , )yz i xz im n z n m z  ; (20) 

 
 ( ) ( ) ( ) ( )

( ) ( )

( , , ) 1 ( ) (1 2 )( )

                     ( ) .

i i i i

i i

z z z zi i i i

zx i i

z zi i

i

m n z m A e A e m C e C e

z m C e C e

   

 

  



 



      

  

 (21) 


