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Abstract: The recycling of waste electric and electronic equipment (WEEE) is of great interest 

due to the large amounts of such wastes and to their contents of useful and precious metals. 

After reaching the end of its service lifetime, WEEE is collected and recycled through various 

processing methods, depending on the waste type.   

Pyrometallurgy is currently the most used method for the recovery of the metallic fractions 

from WEEE such as printed circuit boards (PCBs). This type of processing raises major issues 

because of the generated gas emissions. The non-metallic fraction of the PCBs, which account 

for a large proportion (50-70 wt.%), contains brominated flame retardants, thermosetting resin, 

reinforced materials and other toxic and hazardous organic substances. The combustion of 

these chemicals during the pyrometallurgical processes may cause serious health-related and 

environmental problems. In this paper, the treatment in microwave field of the toxic gases 

resulted from the melting of crushed PCBs has been preliminarily investigated. During the 

waste melting in a microwave furnace, toxic compounds such as benzene (3.2-6.5 mg×m-3), 

toluene (15.3-17.8 mg×m-3), ethylbenzene (2.8-5.7 mg×m-3), styrene (21.5-24.3 mg×m-3), 

m/pXilen (1.4-2.8 mg×m-3), naphthalene (1.1-1.3 mg×m-3) and 1,3,5 trimethylbenzene (15.2-

23.5 mg×m-3) have been detected in the effluent gases. The treatment was carried out by 

passing the resulting gases through a filter fabricated from a microwave susceptor granular 

material (SiC), placed in a microwave transparent tube (fused quartz, 5 cm diameter). For 

heating the filter, a number of 3 magnetrons (2.45 GHz frequency and 850 W power each) 

were mounted outside the fused quartz tube at an angle of 120 degrees and in different 

geometrical planes. The influence of the process parameters (heating response of the susceptor 

materials, temperature, gas flow, gas pressure) was investigated. It was observed that the 

temperature of the filter (i.e. the power density in the microwave susceptor material) has a 

major influence on the neutralization of the toxic compounds while the gas flow and pressure 

had a minor influence. At a temperature of 1350-1400˚C (power density of 5000 W× kg-1), a 

gas flow of 150 m3 × h-1 and a pressure of 800-1000 mbar, the content of such substances in the 

gases was reduced below the legal limits.These results confirm the feasibility of the process of 

treating the gases resulting from the melting of e-waste in a microwave furnace. 
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1. Introduction 

The rapid technological advancements in the consumer electronics industry lead to the faster 

replacement of current products, generating high amounts of electrical and electronic equipment waste 

(20 to 50 million tones/year worldwide). The recycling of waste electric and electronic equipment 

(WEEE) is of great interest due to the large amounts of such wastes and to their contents of useful and 

precious metals. After reaching the end of its service lifetime, WEEE are collected and recycled 

through various processing methods, depending on the waste type.  

 Amongst WEEE, the printed circuit boards (PCBs) represent a very important source of nonferrous 

(Cu, Al, Fe, Ni, Pb), rare and precious metals (Au, Ag, In, Sr, Ta, etc.), but especially of Cu and Au 

[1,2,3]. The frame of the printed circuits represents approximately 23% of the PCB’s weight [4,5]. The 

copper (20%) and gold (250 g/t) contents in a printed circuit board used in common computers are 

much higher than those existing in an ore, respectively 20-40 times (Cu) and 25-250 times (Au) higher 

[4,5]. Printed circuits are present in a wide range of electronic equipment and small-sized home 

appliances: electronic instruments, toys, sports gear, etc. The frame boards have an inhomogeneous 

chemical composition and a complex structure, containing approximately 50÷55% organic 

components and 45÷50 % metallic fraction.  

 As e-waste also contains toxic metals (cadmium, mercury, etc.) and organic pollutants, their 

processing represents an important issue in respect to the EU environmental policies. WEEE 

processing for the recovery of the component metals is a subject which generated various studies and 

which also led to the development of technologies for metals separation/obtaining.  

 Pyrometallurgy is currently the most used method for the recovery of the metallic fractions from 

WEEE such as printed circuit boards (PCBs) [6-8]. This type of processing raises major issues because 

of the generated gas emissions. The non-metallic fraction of the PCBs, which account for a large 

proportion (50-70 wt.%), contain brominated flame retardants, thermosetting resin, reinforced 

materials and other toxic and hazardous organic substances. The combustion of these chemicals during 

the pyrometallurgical processes may cause serious health-related and environmental problems [9-12]. 

In this paper, the treatment in microwave field of the toxic gases resulted from the melting of crushed 

PCBs has been preliminarily investigated. 

 

2. Experimental 

The electronic wastes used in the experiments came from the dismantling and grinding of printed 

circuit boards (PC, radio, TV, mobile phones etc). The comminuted material was melted in a 

microwave field in inert atmosphere (Ar). Microwave melting presents a series of advantages, such as 

rapid heating cycles with energy savings of approximately 35%, compared to conventional melting 

methods; an improved process control; no direct contact with the heating materials; the possibility of 

processing various nonferrous metals containing wastes (WEEE, Al and brass, etc.) for the recovery of 

constituent metals with high efficiencies (94÷96% for the multi-component alloy). This innovative 

method allowed the complete and efficient separation of the metallic fraction and the organic 

components. 

 The printed circuit boards were grinded down to sizes of approximately 0.5÷2 cm and melted in an 

experimental installation, in the following conditions: 

- Three microwave generators of 800 W capacity each, placed circularly on the furnace casing; 

- Working temperatures of 1000÷1200C; 

- Temperature measurement using a Pt/Pt-Rh wire thermocouple; 

- Time: approx. 30 minutes; 

The technological flow-chart is presented in figure 1. 
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Figure 1. Technological flow-chart of the WEEE microwave melting. 

 

The experimental melting installation is composed from the steel casing, on which three microwave 

generators are placed outwardly (figure 2). The microwave susceptor silicon carbide crucible, in which 

the metallic waste is placed, is situated inside the furnace.  

 

Figure 2. Microwave melting furnace: 1– Microwave generator; 2 – Furnace casing;  

3 – Thermal insulation; 4 – Layer of microwave susceptor material; 5 - Crucible;  

6 – Thermocouple; 7 – Furnace lid; 8 – Raw material (WEEE). 

 

 For eliminating the heat loses through the chamber walls, a thermal insulation (3) layer fabricated 

of super-aluminous ceramic fiber, which can resist to temperatures of up to 1600C, is inserted 

between the exterior wall of the crucible (5) and the furnace chamber (2). The material is heated using 

three microwave generators (1) of 800 W capacity each, mounted on the furnace walls. Flux 

(NaCl+KCl mix in a 1:1 ratio) is added to diminish the risk of metal oxidation during melting, in an 

amount which represents 5-10 wt% of the waste quantity. The chemical composition of the resulting 

multi-component alloy, cast as ingots, is given in table 1. 

 

Table 1. Chemical composition of the multi-component alloy. 

Element Cu Sn Pb Zn Fe Ni Al Ag Au Other* 

% 55 - 70 10-20 5-15 5-10 0.5-2 0.5-3 0.5-4 0.5-0.8 0.05-0.2 0.3-1 

       *Other: Sb, Mn, Mo, Cr, Ti, V, Ta   
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 The multi-metallic bulk is subsequently processed for the extraction of the contained base and 

precious metals through various hydro- and electrometallurgical methods. The general technological 

flow-chart of the recovery process is presented in figure 3. 

 

 

 Figure 3. Technological flow-chart of the multi-component metallic bulk processing. 

 

 During the waste melting in the microwave furnace toxic compounds such as benzene, toluene, 

ethylbenzene, styrene, m/pXilen, naphthalene and 1,3,5 trimethylbenzene are generated in the effluent 

gases (table 2).  

 

Table 2. Composition of the gases resulting from the melting process. 

Compound Benzene Toluene Ethylbenzene Styrene m/pXilen Naphthalene 1,3,5 trimethylbenzene 

Quantity 

[mg×m-3] 

3.2-6.5 15.3-17.8 2.8-5.7 21.5-24.3 1.4-2.8 1.1-1.3 15.2-23.5 

 

 These compounds are treated in a system which consists of a microwave irradiated chamber 

containing a microwave susceptor granular material for controlling the gas atmosphere. The emissions 

resulting from the WEEE pyrolysis process are directed through the thermal filter and mixed with an 

oxidizing agent to ensure the transformation of the organic compounds mainly into carbon dioxide. 

The working temperature of the filter is attained exclusively by using microwave energy. Cavities in 

which microwave generating systems (consisting of the magnetron unit, the waveguide and the power 

transformer) are mounted are designed in the body of the thermal filter.  

 The drawing of the thermal filter is presented in figure 4. It is formed by the cylindrical shaped 

body of the filter, fitted with a flange (2) and a fashioned support pad (3) at the bottom, and at the top 

with a lid (4) and a gas intake cone (5). In the body of the filter (1) there are rectangular cavities (6) of 

a length equal to the wavelength of the microwave frequency used. The quartz tube (7) is fastened to 

the support pad (3) and passes through the lid (4), which contains a quartz sieve (8) at the bottom part. 

A granular material (9) made of microwave susceptible materials is placed in the quartz tube (7), for 

high temperatures. A microwave transparent thermal insulation (10) is placed between the quartz tube 

(7) and the body of the filter (1). The microwave irradiation system consists of an adaptation flange 

(11) on which the waveguide (12) is mounted, and a magnetron unit (13) operating at the frequency of 

2.45 GHz. The temperature measurement in the thermal filter is carried out with pyrometers located at 
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the bottom (14) and at the top (15) of the quartz tube, as well as before the entrance (16) and exit (17) 

of the heat treatment chamber. The control of the temperature in the granular material is achieved 

using temperature regulators (18). The pressure at the inlet of the thermal filter is measured with 

pressure sensors (19) which can operate at high temperatures.  

 The flow of exhaust gas is kept constant using a Venturi tube (20), which can be mounted after the 

thermal filter to obtain a controlled entrainment of the gaseous emissions. A pressure regulator (21) is 

mounted on the compressed air line before the tube to ensure a constant flow of compressed air for 

operating the Venturi tube.  

 

 

Figure 4. Drawing of the gas treatment system. 

 

 The irradiation of the microwave susceptible granular material generates the thermal 

decomposition temperatures of the combustion gases, using power densities ranging from 50 to 5500 

W/kg of granular material. The microwave system is connected to a thermostatic system, in order to 

achieve the isothermal regime necessary for the thermal decompositions to take place. 

The influence of the process parameters (heating response of the susceptor materials, temperature, gas 

flow, gas pressure) was investigated. 
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3. Results and discussion 

The mean values of the chemical compositions of the exhaust gases, measured at the outlet of the 

thermal filter, are given in tables 3-5. The gas flow values were 450, 300 and 150 m3×h-1, at a gas 

pressure of 800-1000 mbar. The temperature of the filter was measured at 800, 1100 and 1400˚C. 

The emissions were measured at the exhaust outlet located behind the thermal filter that is positioned 

at the top of the melting furnace. The sampling was performed using the non-extractive method that 

did not require sample absorption and was limited to the gas flow existing in the pipe. The sampling 

plane was located in a section of the waste gas pipeline where homogeneous flow conditions and 

concentrations are expected, away from any fluctuation which could result in a change in effluent 

direction (a pipe section with a right line length of at least 5 hydraulic diameters upstream and 2 

hydraulic diameters downstream of the sampling plane). 

A TESTO 435 analyser was used for the determination of the exhaust gas physical parameters (rate, 

temperature, pressure). The gas flow was determined using the following equation (1): 

 

Fex = S ×v× 3600  (1) 

 

where 

Fex - exhaust gas flow, m3×h-1 

S - section of the measurement point, in mp 

v - exhaust gas rate, in m/s. 

 

 The temperature of the thermal treatment filter was measured using a Pt-PtRh thermocouple. A 

Tiger PhoCheck photoionization analyser (PID) was used to determine the emissions of volatile 

organic compounds in the gases resulting from WEEE melting. This method allows the determination 

of a wide range of organic gases and vapours and also some inorganic compounds. In order to obtain a 

response, the photon energy of the PID lamp must be higher than the ionizing energy of the 

compound. In this work the 9.8 eV, 10.0 eV, 10.6 eV, and 11.7 eV lamps were used for experimental 

determinations. The reference standard gas used for the PID calibration, was isobutylene. 

 

Table 3.  Chemical composition of the effluent gases at a gas flow of 450 m3×h-1 and  

a pressure of 800-1000 mbar. 

 Filter Temperature [°C]  

Components 

mg×m3 

800oC 1100oC 1400oC Legal limit * 

 [mg/m3] 

Benzene 6.5 3.3 1.4 5 

Toluene 17.1 16.8 15.4 100 

Ethylbenzene 5.5 2.9 1.3 5 

Styrene 23.8 21.6 18.7 100 

m/pXilen 2.7 2.7 2.3 100 

Naphthalene 1.2 1.1 1.1 100 

1,3,5 Trimethylbenzene 17.8 6.3 4.2 5 
* National legislation, Government order 462/1993. 
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Table 4. Chemical composition of the effluent gases at a gas flow of 300 m3×h-1 and  

a pressure of 800-1000 mbar. 

 Filter Temperature [°C]  

Components 

mg×m3 

800oC 1100oC 1400oC Legal limit  

 [mg/m3] 

Benzene 6.3 3.5 1.9 5 

Toluene 17.8 16.3 14.9 100 

Ethylbenzene 5.6 2.5 1.5 5 

Styrene 25.8 20.6 17.6 100 

m/pXilen 2.8 2.4 2.4 100 

Naphthalene 1.1 1.1 1.0 100 

1,3,5 Trimethylbenzene 18.3 6.1 3.3 5 

 

Table 5.  Chemical composition of the effluent gases at a gas flow of 150 m3×h-1 and  

a pressure of 800-1000 mbar. 

 Filter Temperature [°C]  

Components 

mg×m3 

800oC 1100oC 1400oC Legal limit  

 [mg/m3] 

Benzene 6.4 3.2 1.5 5 

Toluene 17.9 16.5 14.2 100 

Ethylbenzene 5.4 2.7 1.1 5 

Styrene 26.8 22.6 15.3 100 

m/pXilen 2.7 2.8 2.3 100 

Naphthalene 1.2 1.0 1.1 100 

1,3,5 Trimethylbenzene 16.6 5.8 3.1 5 

 

 The variation of the benzene, ethylbenzene and 1,3,5 trimethylbenzene contents in the exhaust 

gases treated in the thermal filter, depending on the filter temperature, is presented in figure 5, for a 

gas flow of 150 m3×h-1. The variation of the benzene, ethylbenzene and 1,3,5 trimethylbenzene 

contents depending on the gas flow, is presented in figure 6, at a filter temperature of 1400°C. 
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Figure 5. Variation of the benzene, ethylbenzene and 1,3,5 trimethylbenzene contents in  

the exhaust gases treated in the thermal filter, depending on the filter temperature. 
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Figure 6. Variation of the benzene, ethylbenzene and 1,3,5 trimethylbenzene contents in 

the exhaust gases treated in the thermal filter, depending on the gas flow. 

 

 The values at 200°C are those recorded at the outlet of the melting furnace and before entering the 

gas thermal treatment filter. At a filter temperature of 800°C, the concentrations of benzene and 

ethylbenzene are basically the same to those at the filter inlet, as the concentration of 1,3,5-

trimethylbenzene dropped from about 23 mg/m3 to 16.6-18.3 mg/m3. With the increase of the filter 

temperature to 1100 - 1400°C there can be observed a linear decrease of the concentration of benzene 

and ethylbenzene at values below the legal limit of 5 mg/m3. The 1,3,5-trimethylbenzene content drops 

to about 5-6 mg/m3 at 1100°C and at 3-4 mg/m3 at 1400°C (also below the legal limit). 

 Depending on the gas flow through the thermal filter (heated to 1400°C), there are very few 

variations in the benzene and ethylbenzene content, which are in the concentration range 1.4-1.9 

mg/m3. 

 The content of 1,3,5-trimethylbenzene in the treated gases decreases with the reduction of the flow, 

which denotes another mechanism of decomposition for this gas. 

 

4. Conclusions 

This paper demonstrated the feasibility of the treatment in microwave field of the toxic gases resulted 

from the melting of e-waste. Toxic compounds such as benzene, toluene, ethylbenzene, styrene, 

m/pXilen, naphthalene and 1,3,5 trimethylbenzene were circulated through a filter fabricated from a 

microwave susceptor granular material, placed in a microwave transparent tube. The influence of the 

process parameters (heating response of the susceptor materials, temperature, gas flow, gas pressure) 

was investigated. It was observed that the temperature of the filter had a major influence on the 

neutralization of the toxic compounds while the gas flow and pressure had a minor influence. At a 

temperature of 1350-1400˚C (power density of 5000 W× kg-1), a gas flow of 150 m3 × h-1 and a 

pressure of 800-1000 mbar, the content of such substances in the gaseous emissions was reduced 

below the legal limits. 

These promising results confirmed the remarkable potential of this innovative method for the recovery 

of useful and precious metals from WEEE. 



9

1234567890‘’“”

ModTech 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 400 (2018) 022023 doi:10.1088/1757-899X/400/2/022023

Acknowledgements: This paper has been achieved with the financial support of the National authority 

for Scientific Research and Innovation and of the Ministry for European Funds, through the project 

POC-A.1-A1.2.3-G-2015/ID: P_40_397/, Contract 17/01.09.2016, SMIS 2014+: 105532. 

 

5. References 

[1] Luda M P 2011 Integrated Waste Management 2 (InTech: Rijeka) p 285 

[2] Kamberovic Z, Korac M and Ranitovic M 2011 Metalurgija 17 139 

[3] Duan H, Hou K, Li J and Zhu X 2011 J. Environ. Manage. 92 392 

[4] Deveci H, Yazıcı E Y, Aydın U and Akçil A U 2010 Proc. of the 5th Going Green: CARE 

INNOVATION Conf. (Vienna) (Vienna: Austria) 8 

[5] Hagelüken C 2006 A.M.S 12 p111 

[6] Yang X, Sun L, Xiang J, Hu S and Su S 2013 Waste Management 33(2) 462 

[7] Wang H, Zhang S, Li B, Pan D, Wu Y and Zuo T 2017 Resources, Conservation & Recycling 

126 209 

[8] Wang R and Xu Z 2014 Waste Management 34(8) 1455 

[9] Badger G M 1995 Progress in physical organic chemistry (Ed. Cohen S) p 1 

[10] Van Krevelen D W 1990 Thermal Decomposition. Properties of Polymers (Elsevier, The 

Netherlands) 

[11] Acomb J C, Nahil M A and Williams P T 2013 Journal of Analytical and Applied Pyrolysis 103 

320 

[12] Martinho G, Pires A, Saraiva L and Ribeiro R 2012 Waste Management 32(6) 1213 


