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Abstract. The dynamic behaviour of the bogie of the railway vehicle is generally studied by 

capitalizing on the advantage of the symmetrical construction, which allows the vibrations in 

the vertical be considered decoupled from the ones in the horizontal plan. Likewise, the bounce 

and pitch vertical vibrations of the bogie are decoupled, due to the fact that elastic and damping 

elements with identical characteristics are normally used in the suspension corresponding to 

each axle of the bogie. The paper studies a particular situation, correlative with the failure of a 

damper in the primary suspension of a two-axle bogie. As a consequence of the damping 

reduction, an imbalance in the system occurs that will prompt dynamic interferences between 

the bounce and pitch vibrations of the bogie. The level of vibrations will rise, a fact focused on 

in the paper as based on the results from the numerical simulations, which represent the 

frequency response functions of the bogie calculated in the three reference points of the bogie, 

for different cases of reduction in the damping constant, compared with the reference value. 

The increase of the level of vibrations has an impact on the dynamic behaviour of the bogie, 

evaluated on the basis of the root mean square of the vertical acceleration.  

1. Introduction 

The railway vehicle represents a complex oscillating system, which features a behaviour of vibrations 

with specific characteristics, mainly generated by the vehicle-track interaction phenomena [1-4]. 

Under certain circumstances, the vibrations of the railway vehicle can have damaging effects upon the 

ride quality, safety, comfort of the passengers or integrity of merchandise being transported [5-10]. 

The oscillating movements of the railway vehicle develop both in the vertical and horizontal plans, 

in the shape of translation and rotation moves, independent or coupled among them. The construction 

of the railway vehicle usually comply with the rules of geometric symmetry, inertial and elastic, hence 

the moves in the vertical plan can be regarded as decoupled from the ones in the horizontal plan and, 

for that reason, separately dealt with. 

The oscillating movements of the railway vehicle are made up of simple vibration modes of the 

suspended masses of the vehicle – the rigid modes [11], to which the complex modes of vibrations 

global or local, due to the carbody elasticity characteristics, such as bending and distortion, the modes 

of diagonal torsion and the local deformations of the floor, walls or ceiling [12]. 

The paper will examine the rigid vibration modes of the bogie in the vertical plan – bounce and 

pitch. These vibrations are decoupled if the bogie is symmetric geometrically and mass-related by 

comparison with the vertical – transversal plan and if the primary suspension corresponding to each 

axle of the bogie uses elastic and damping components with identical characteristics. While running, 



2

1234567890‘’“”

ModTech 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 400 (2018) 042020 doi:10.1088/1757-899X/400/4/042020

 

 

 

 

 

 

changes in the suspension parameters can occur and they originate, for instance, in the failure of a 

damping that is the critical element of suspension from the feasibility perspective [13]. As a 

consequence of a reduction in damping, there occurs an imbalance in the system resulting into 

dynamic interferences between the bounce and pitch vibrations of the bogie [14, 15]. The level of 

vibrations in the bogie will increase, a fact that is pointed out at herein, based on the results derived 

from numerical simulations. To this end, the frequency response functions are calculated in three 

reference points of a two-axle bogie – at the centre and against the suspension corresponding to the 

axles, for different cases of lowering the damping constant compared with the reference value. The 

increase in the level of vibrations affects the dynamic behaviour of the bogie, which is evaluated on 

the basis of root mean square of the vertical acceleration at various velocities. 

2. The model of the bogie and the equations of motion  

Figure 1 shows the mechanical model of a two-axle bogie travelling at a constant velocity V on a track 

with vertical irregularities described against each axle via the functions 1,2. The model of the bogie 

includes three rigid bodies by which the bogie chassis and the two axles connected by Kelvin-Voigt 

type systems are modelled; on their turn, such systems help with the modelling the suspension of each 

axle. The elastic element of the suspension has the constant 2kb, while the damping element has the 

constant 2cb1 and 2cb2, respectively. The damping constants of the suspension in the two axles are 

equal (2cb1 = 2cb2) when neither of the dampers is faulty. The bogie parameters are mb – mass of the 

bogie, 2ab – wheelbase of the bogie, Jb – inertia moment. 

 

 

Figure 1. The model of the bogie. 

 

The hypothesis of a perfectly rigid track is considered, which means that the axles closely follow 

the vertical irregularities of the track; the vertical displacements of the axles, noted with zw1,2, are equal 

with these irregularities, namely zw1 = 1 and zw2 = 2. 

The plan of the axles will have a translation motion – bounce zw (figure 2, (a)), and a rotation 

motion – pitch w (figure 2, (b)). The position of each axle in the bogie, compared to the referential 

OXZ (figure 2, (c)) located in the rotation axis of the plan of the axles, is the result of the overlapping 

of the bounce and pitch movements of this plan, such as below: 

  pwpww zzz 1 ; 
  pwpww zzz 2 ,                                                  (1)  

where wpw zz 
 is the displacement of the plan of the axles due to bounce and wbpw az 

 the 

displacement from the pitch movement. 

We will then have  

)(
2

1
21 wwpw zzz  ;  )(

2

1
21 wwpw zzz  .                                       (2) 

Should the two axles are moving in phase (zw1 = zw2), the pitch of the plan of the axles is noticed as 

not being excited. The plan of the axles will only have a bounce motion. 
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Figure 2. The bounce and pitch of the axles plane. 

 

Figure 3 features the displacements of the plan of the bogie axles due to bounce and pitch. The 

motions of bounce and pitch in this plan are conveyed via the suspension to the chassis of the bogie, 

thus triggering its bounce zb and pitch b. Figure 4 presents the bounce and pitch motions of the bogie. 

 

 

Figure 3. The motion of the plan of the axles: (a) and (a’) bounce; (b) and (b’) pitch. 

 

 

Figure 4. The bogie motions: (a) and (a’) bounce; (b) and (b’) pitch. 

 

Supposing that 2cb1  2cb2, the bogie equations of motion are written as: 

0)](2[2)(2)(2 212211  wwbbwbbbwbbbbb zzzkzazczazczm  ,           (3) 

0)](2[2)(2)(2 212211  wwbbbbwbbbbbwbbbbbbb zzaakzzaaczzaacJ  .  (4) 

The coupled equations (3) and (4) show that the interaction between the bogie vibrations of bounce 

and pitch are due to the failure of the dampers. 

Further on, we have the situation when the axles are moving in phase (zw1 = zw2 = zw) – the plan of 

the axles has only a bounce motion. Nevertheless, the bogie pitch is excited, as seen in relation (5): 

04)(2)(2 2
21  bbbwbbbbbwbbbbbbb akzzaaczzaacJ                  (5) 

When neither of the dampers is faulty, as seen earlier, the damping constants are equal (2cb1 = 2cb2 

= 2cb), the bogie equations of motion are decoupled and written as   

0)](2[2)](2[2 2121  wwbbwwbbbb zzzkzzzczm                             (6) 
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0)](2[2)](2[2 2121  wwbbbbwwbbbbbb zzaakzzaacJ                       (7) 

while for zw1 = zw2 = zw the bogie has only a bounce motion.  

3. The frequency response functions of the bogie 

To underline the dynamic interferences occurring between the vibrations of bounce and pitch of the 

bogie upon the failure of the damper, the phase shifting in the track vertical irregularities will not be 

taken into account against the two axles, due to the wheelbase of the bogie. The track vertical 

irregularities are considered to be in a harmonic shape with the wavelength  and amplitude 0,  

ttt  cos)()( 021                                                            (8) 

where = 2V/ is the pulsation induced by the track excitation. 

Should the bogie response is believed harmonic, with the same frequency as the one induced by the 

track excitation, the coordinates describing the bogie motions can be under the generic form of 

tPtp  cos)( 2,12,1                                                               (9) 

where P1 = zb, P2 = abb are the amplitudes of the displacements corresponding to the bogie bounce 

and pitch. 

Thenceforth, the complex associated to the real quantities will be introduced into the equations (3) 

and (4)  
t

w etz  i
2,12,1 )( , tePtp  i

2,12,1 )(                                              (10) 

where )()( 11 ttzw   and )()( 22 ttzw  . A linear system of two non-homogeneous algebraic 

equations is obtained, whose solution allows the determination of the frequency response functions of 

the bogie.  

The frequency response functions of the bogie are calculated in three reference points, shown in 

figure 1 as b – at the bogie centre, w1,2 – against the suspension corresponding to each axle. 

The acceleration response function at the centre of the bogie derives from  

)()( 2 
bzab HH                                                     (11) 

and against the suspension of the two axles, the relations to apply are  

)]()([)( 2
2,1  bb

HaHH bzaw                                     (12) 

where )(
bzH is the response function for the bogie bounce and )(b

H  is the response function for 

the bogie pitch.  

Further on, the track vertical irregularities are regarded as a stochastic stationary process, which 

can be described via the power spectral density from relation [16] 

))((
)(

2222

2

cr

cA
S




                                                  (13) 

where  is the wave number, c = 0.8246 rad/m, r = 0.0206 rad/m;  A = 4.03210-7 radm – for a good 

quality track; A = 1.08010-6 radm – for a low quality track. 

Depending on the angular frequency  = V, the power spectral density of the track irregularities 

can be expressed as in the general relation 

VVSG /)/()(                                                              (14) 

From equations (13) and (14), we have the power spectral density of the track vertical irregularities   
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When starting from the response functions of the bogie acceleration, the equations (11) – (12), the 

spectrum of the track irregularities and from the relation (15), the power spectral density of the vertical 

acceleration at the centre of the bogie can be calculated, 

)()()()()( 22


bzabab HGHGG                                    (16) 

and against the suspension of the two axles, 

2
22

2,12,1 )()([)()()()(  bb
HaHGHGG bzawaw                (17) 

4. The root mean square of the bogie acceleration 
The root mean square of the vertical acceleration in the bogie reference points is calculated based on 

the dynamic response of the bogie expressed under the form of power spectral density of the 

acceleration, as follows: 

- at the centre of the bogies,  









0

)d(
1

abb Ga                                                           (18) 

- against the suspension of each axle,  









0

2,12,1 d)(
1

aww Ga                                                        (19)  

5. The numerical study 

This section deals with the results from the numerical simulations regarding the influence of the 

interference of the bounce and pitch vibrations coming from the failure of a damper in the suspension 

of an axle over the dynamic behaviour of the bogie in the railway vehicle. The dynamic behaviour of 

the bogie is evaluated within the frequency response functions and of the acceleration root mean 

square, calculated in the bogie reference points, for different cases of reducing the damping constant 

of the suspension in axle 1 (cb1) versus the reference value (cb).  

The parameters of the bogie used in the numerical simulations are shown in table 1. 

 

Table 1. Parameters of numerical simulation. 

Bogie mass mb = 3200 kg 

Bogie wheelbase  2ab = 2.56 m 

Inertia moment Jb = 2.05103 kgm2 

Elastic constant of the suspension kb = 1.10 MN/m 

Damping constant of the suspension cb = 13.05 kNs/m  

 

Figure 5 displays the response functions of the acceleration corresponding to the bogie bounce and 

pitch, calculated as below 

)()( 2 
bb zaz HH , )()( 2   bb

HHa .                                       (20) 
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It is marked out that the bogie pitch is not excited (figure 5, (b)) when the damping constants are 

equal, but the bogie has only a bounce motion (figure 5, (a)). The response function of the acceleration 

correlated with the bogie bounce is maximum at the resonance frequency, i.e. 5.9 Hz.  

The damping constant is reduced to half in relation to the reference value (cb1 = cb/2) due to the 

failure in the damper of the suspension of the front axle.  In this context, the bogie pitch is excited, as 

seen in figure 5, (b). The response function of the acceleration corresponding to the bogie has the 

highest value at the resonance frequency, which is 9.4 Hz.  The maximum influence of the reduction in 

the damping constant upon the response function matching the bogie bounce is visible at the resonance 

frequency by an increase in
bazH . At sub-critical frequencies, the influence is negligible, yet there is a 

decrease in the response function of the acceleration correlated with the bogie bounce for cb1 = cb/2 

that manifests for frequencies higher than 8.7 Hz.  

   

 

Figure 5. The response functions of the acceleration: (a) bogie bounce; (b) bogie pitch. 

 

Figure 6 shows the response functions of the acceleration in the bogie reference points. Should the 

dampers have equal damping constants (figure 6, (a)), the bogie has only a bounce motion, both at its 

centre and against the axles. A reduction in the damping constant in the suspension of the front axle, 

the bogie pitch is excited, which can be visible in the bogie response against the two axles that is not 

symmetrical (figure 6, (a)). The level of vibrations in the bogie rises, mainly at the resonance 

frequencies of the bounce and pitch vibrations.  

    

 

Figure 6. The acceleration response functions in the bogie reference points. 

 

Figure 7 presents the power spectral density of the vertical acceleration in the bogie calculated at 

the bounce resonance frequency (5.9 Hz) in the reference points located against the suspension 

correlative with each of the two axles. The reduction of the damping constant in the suspension of the 

front axle is noticed to lead to the amplification of the bogie response above both axles. The increase 

in the power spectral density of the acceleration is significant, mainly at high velocities. For instance, 

this power spectral density of the acceleration goes up from 0.11 (m/s2)2/(1/s) to 0.25 (m/s2)2/(1/s) – 

for cb1 = cb/2, and to 0.72 (m/s2)2/(1/s) – for cb1 = 0, in the reference point w1, at velocity of 200 km/h.  
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In the reference point w2, the power spectral density of the acceleration rises from 0.11 (m/s2)2/(1/s) to 

0.16 (m/s2)2/(1/s) – for cb1 = cb/2, and to 0.40 (m/s2)2/(1/s) – for cb1 = 0.  

Figure 8 features the power spectral density of the bogie vertical acceleration calculated at the pitch 

resonance frequency (9.4 Hz) in the reference points located against the suspension corresponding to 

each of the two axles. In the reference point w1, the power spectral density of the acceleration has a 

uniform increase along with the decrease of cb1. Alternatively, for the reference point w2, the power 

spectral density of the acceleration goes down by lowering the cb1 to a certain value.  Once this value 

of the damping constant is exceeded, Gaw2 starts going up.  As an example, at velocity of 200 km/h,   

Gaw2 decreases from 0.015 (m/s2)2/(1/s) – for cb1 = cb = 13.05 kNs/m, to 0.0018 (m/s2)2/(1/s) – for cb1 = 

5 kNs/m, then increases to 0.029 (m/s2)2/(1/s) – for cb1 = 0. 

 

 

Figure 7. Power spectral density of the bogie acceleration at the bounce resonance frequency:  

(a) in the reference point w1; (b) in the reference point w2. 

 

 

Figure 8. Power spectral density of the bogie acceleration at the pitch resonance frequency:  

(a) in the reference point w1; (b) in the reference point w2. 

 

Figure 9 shows the root mean square of the vertical acceleration in the three reference points of the 

bogie for velocities ranging from 60 to 200 km/h and different values of the damping constant of the 

suspension in the front axle. The reduction of the damping constant cb1 is noticed to determine a 

general increase in the level of vibrations in the bogie; the acceleration rises in all the reference points 

of the bogie. The highest growth is visible in the reference point located above the suspension in the 

front axle and the lowest in the suspension in the rear axle. For instance, ab rises by 62%, aw1 by 134%, 

and aw2 by 49% at the velocity of 200 km/h, should the damping constant decreases from the reference 

value (cb1 = cb = 13.05 kNs/m) to cb1 = 0. 
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Figure 9. Root mean square of the vertical acceleration:  

(a) in the reference point b; (b) in the reference point w1; (c) in the reference point w2. 

6. Conclusions 

This paper examines the dynamic behaviour of a two-axle bogie during running in a track with vertical 

irregularities, when considering the particular situation of a failure in a damper in the suspension of 

one of the axles.  

The damper failure is simulated by the reduction in the damping constant in relation to the 

reference value. Based on both the analytical results and the ones derived from numerical simulations, 

the bounce and pitch vibrations in the bogie have been shown to be coupled herein. The dynamic 

interferences between the two vibrations will trigger a higher level of the vibrations in the bogie, a fact 

that is visible in the frequency response functions calculated in three reference points of the bogie – at 

the centre and against the suspensions corresponding to the two axles. It has been thus shown that the 

reduction in the damping constant has a significant influence on the bogie response in all the reference 

points, mainly at the resonance frequencies of the bounce and the pitch. Similarly, the results 

concerning the power spectral density of the vertical acceleration have proven that the higher the 

velocity, the more important the amplification of the regime of vibrations in the bogie.  The highest 

vertical accelerations of the bogie are recorded at high velocity, against the suspension with the failed 

damper.  
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