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Abstract. Thermal-induced deformation accounts for 40-70% of the total dimensional and 
shape errors that arise from various sources of machine tools. This paper suggests a hybrid 
model based on regression-based analysis and computation-based simulation to predict the 
thermal deformation of high speed motorized spindle. COMSOL Multiphysics was used to 
obtain the numerical solutions of the thermal deformation, and the PLS algorithm was used to 
modify the error between the simulation model and the experimental data collected from the 
spindle test system. The experimental results showed that the proposed hybrid model could 
predict thermal deformation effectively and accurately, and it can be used for real-time thermal 
deformation compensation to improve the machining accuracy of NC machine tool.  

1. Introduction 
Thermal-induced deformation accounts for 40 - 70% of the total dimensional and shape errors that 
arise from various sources of machine tools [1-3]. Thermal issues in machine tools have been studied 
extensively in the past decades, and detailed reviews can be found in literatures [4-11]. In order to 
improve the machining accuracy of finished parts, effective thermal error compensation measures are 
achieved via re-adjusting the axes positioning or via shifting the original coordinates based on the 
thermal deformation model. 

In order to estimate thermal deformation, either computation-based or regression-based models are 
employed [12-24]. The computation-based models can be represented with thermal transfer functions. 
The finite element method (FEM) and finite difference method are widely used to model the thermal 
behaviour of motorized spindle under the influence of heat sources inside the structure and in its 
surroundings. Numerous computational models have been proposed as summarized in the literatures 
[25-31]. However, due to the low efficiency, the computation-based models were rarely employed in 
online thermal compensation, usually used only for simulation analysis and providing a design 
reference. As for regression-based models, the relationships between temperature rise and thermal 
deformation are studied based on the measured data. The regression-based models mainly include 
multivariate statistical models [19], neural network models [21], and gray theoretical models [22]. All 
the regression-based models play an important role in the thermal error compensation implementation. 
However, the accuracy of the data model depends on the quantity and quality of the modelling data. 
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Once the data exceeds the scope of modelling data, the model predictions could show a serious 
deviation, that is, weak generalization ability. Hybrid modelling can achieve the best of both 
computation-based and regression-based models. Combining computational analysis with 
experimental data, regression analysis is used to extract complex information that cannot be explained 
by the computation-based model, and the computation-based model could improve the generalization 
ability of the regression-based model. 

This paper proposes a hybrid model based on PLS and COMSOL to predict the thermal 
deformation of the high-speed motorized spindle. Firstly, through the analysis of the temperature field 
of the motorized spindle, the geometric model and thermal boundary conditions for finite element 
modelling were obtained. The COMSOL Multiphysics software was used to simulate the motorized 
spindle to obtain the thermal deformation in three dimensions. Then, the PLS regression method was 
used to establish the relationship between the temperature rise and the errors of COMSOL model. 
Experimental data collected from the spindle thermal deformation test system were used for the model 
validation.  

2. Thermal characteristics of motorized spindle 
The structure of the motorized spindle is shown in figure 1, which includes the house, stator and rotor 
of the motor, shaft, coolant jacket and bearing set. In general, the motorized spindle is equipped with a 
built-in motor as an integrated component. The thermal deformation is induced by the electromagnetic 
loss between the stator and the rotor, and mechanical friction loss was generated in the bearing set. All 
the energy loss is converted into heat and then transferred to the shaft, leading to thermal deformation, 
especially in the axial direction, which heavily influences the machining accuracy.  

 

Figure 1. The structure of motorized spindle. 
 
According to the energy conservation law: 

  



Tk

t

T
C P11 ,                                                       (1) 

where 
V

Q
  is the heat generation rate (W·m-3), Q is the heat source (W), V is the volume of the 

heat source (m3), 1  is the density (kg·m-3), 
1PC  is the heat capacity (J·kg-1·K-1), T is the temperature 

(K), k  is the thermal conductivity (W·m-1·K-1). 
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The thermal deformation equation of the spindle is: 

  refth TTT  ,  (2) 

where th  is the thermal strain, is the thermal deformation coefficient (1/K), refT  is the ambient 

temperature (K). 
The stator in the motorized spindle is cooled by water in the coolant jacket, and the rotors and 

bearings are cooled by compressed air in the oil mist lubrication device. As shown in figure 1, it is 
assumed that there are forced convection heat transfer in the air-gaps that between the stator and rotor, 
the rotor and the compressed air, the cooling water and the water jacket. There is natural convection 
heat transfer between the shell surface and environment air. For the convective heat transfer, according 
to Newton’s Law, the relationship between the heat flow vector and the heat transfer coefficient is 

 refTThq  ,                                                             (3) 

where h  is the heat transfers coefficient (W·m-2·K-1), q is the heat flux (J ·m-2·s-1). 

A finite element model can be established to predict the thermal deformation of the motorized 
spindle taking into account the structural parameters and operating condition based on the above 
equations. 

3. Computation model based on COMSOL 
The finite element model is obtained based on figure 1 by assuming that the bearing, the rotor and the 
stator are simplified to be assembled on the shaft, ignoring all the screws, the vent holes, the through 
holes, and integrating the fine structure, the bearing inner ring, outer ring and rolling elements. 
Because the motorized spindle is an axial symmetrical structure, 1/4 of the finite element model of 
motorized spindle is shown in figure 2. The total simulation time is 4800 seconds, and the step size is 
300 seconds. A tetrahedral mesh structure of free partition is used and refined with 125,626 tetrahedral 
elements, 23,087 triangular elements, and 2,339 edge units. The material properties of the model are 
shown in table 1. 

 

Figure 2. The finite element model of motorized spindle (a) geometrical model (b) 
meshing model. 

The boundary conditions involve the stator heat, rotor heat and bearing heat obtained by the power 
loss test. In addition, there are four obvious different heat transfer processes of the 150MD24Z7.5 
motorized spindle as shown in table 2, refer to figure 1. Therefore, the heat transfer coefficient 
between the shaft end and the environment air is h1, the heat transfer coefficient between the air-gap 
and compressed air is h2, the heat transfer coefficient between the cool water and the coolant jacket is 
h3, and the heat transfer coefficient between the shell surface and environment air is h4. The stator 
losses, rotor losses and bearing friction losses of the motorized spindle are obtained by the 
experimental method under the speed of 5,000 rpm, 8,000 rpm, 10,000 rpm and 12,000 rpm. The 
values of h1~h4 are listed in table 3. 
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The finite element method is used to obtain the numerical solutions to the temperature and thermal 
errors. The temperature field distribution of the motorized spindle system is shown in figure 3. The 
maximum temperature area distributes mainly over the rotor and the shaft core. The reasons are that 
the rotor accounts   for one third of the motor heat dissipation, and there is no cool system to directly 
take out the heat of the rotor and the shaft core. The temperature field of the stator is lower than that of 
the rotor because the spindle sleeve connecting with the stator has a cool system which can greatly 
decrease the temperature of the stator and the spindle sleeve. 

Table 1. Material properties for FEM. 

 Material 
Density 

(kg/m3) 

Linear 
expansion 
coefficient 

(10-6K-1) 

Modulus of 
elasticity (Gpa) 

Poisson 
ratio 

Heat capacity 

J/(Kg·K) 

Thermal 
conductivity 

W/(m·K) 

Stator  
Silicon 

steel 
7.82 13 198 0.26 535 35 

35Rotor  
Cast 

aluminum 
2.77 23.6 69 0.32 875 167 

Winding Copper 8.933 17 80 0.36 385 400 

Bearing and 
other 

Steel 7.872 10 208 0.3 434 60.5 

 

 

Table 3. Boundary conditions for FEM. 

Speed(rpm) 
Simulation conditions 

5000 8000 10000 12000 

             108.3 116 140.7 156.9 Stator heat 

               54.1  58          70.3   78.5 Rotor heat 

                 2.3          17  28.7   41.3 Bearing heat 

               83.21  97.83 106.1 115 h1 

 109.92 131.64 143.9 156.13 h2 

             279 279 279 279 h3 

                9.7           9.7            9.7             9.7 h4 

 
After the analysis of stable heat conduction has been completed, the element type is changed, the 

elastic module, poisons ratio and coefficient of thermal expansion are set, the analysis results of stable 
heat conduction serve as the temperature condition, and the DO constraints are attached to the bottom 
of the spindle. The results of thermal deformation analysis can be seen in figure 4. 

Table 2. Heat transfer process of motorized spindle. 

Numbering position 

h1 Forced convective heat transfer  between the shaft end and the environment air 

h2 Forced convection heat transfer  between the air-gap and compressed air 

h3 Forced convection heat transfer  between the cooling water and the coolant jacket 

h4 Natural convection heat transfer  between the house surface and environment air 
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Figure 3. Temperature field distribution results (a) n=5000rpm (b) n=8000rpm (c) n=10000rpm 
(d)n=12000rpm. 

 

 

Figure 4. Thermal deformation prediction results (a) n=5000rpm (b) n=8000rpm (c) n=10000rpm 
(d)n=12000rpm. 
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The thermal deformations of the main components of the motorized spindle system are affected by 
the thermal characteristics and temperature field distribution, which causes the thermal error of the 
shaft and whole motorized spindle. In figure 4, in the axial direction, namely the Z direction, the 
maximum deformation is about 58μm, 70.4 μm, 72.7 μm and 89.6 μm when the speed is 5000 rpm, 
8000 rpm, 10000 rpm and 12000 rpm, respectively. The axial deformation of the spindle is higher than 
the radial deformations. 

The numerical solutions can approximate the analytical solutions very well as long as the spindle is 
correctly and finely meshed. The reliability of simulation results also depends on whether the thermal 
loads and boundary conditions are well defined. The accurate calculation of the thermal boundary 
conditions is a necessary condition for ensuring the accuracy of the finite element theory model. The 
inaccuracy of any of the material properties in the boundary conditions, the convection coefficient, the 
thermal contact resistance, and the heat generated by the heat source may cause inaccurate predictions. 
Moreover, the calculation process of the finite element model is relatively complex, generally requires 
loop iteration, and there is a case of non-convergence. Therefore, it is difficult to directly apply the 
thermal error compensation process. However, the finite element model describes the process of 
thermal deformation from the thermal characteristic mechanism. Therefore, the model has good 
generalization ability. Even if the operating conditions vary within a relatively wide range, the 
predictive result of thermal deformation can be obtained with limited accuracy. In order to improve the 
prediction accuracy of the model, the regression model can be used to supplement or modify the 
computation model. The regression model is a statistical model based on experimentally measured 
thermal deformation and the temperature measurement data of the motorized spindle. But the variation 
in the temperature measurement point of the motor spindle is similar, so there is a strong correlation 
problem in the data. Directly using the measurement data onto multiple regression modelling will 
inevitably produce multiple correlation problems. The existence of multiple correlations can seriously 
jeopardize the parameter estimation of the model, enlarge the model error, and destroy the stability of 
the model. However, the partial least-squares regression method can effectively overcome the adverse 
effects of multiple correlations in the model. 

4. Regression model based on PLS  
Partial least-squares regression is a new multivariate statistical data analysis method that integrates the 
basic functions of multiple linear regression analysis, canonical correlation analysis, and principal 
component analysis. It combines the modelling and forecasting data analysis method of the non-model 
data recognition analysis method and achieves the simplification of the data structure while modelling. 
The PLS method no longer directly considers the regression modelling of the dependent variable Y and 
the independent variable X. Instead, the information about the variable system is comprehensively 
screened again, and several new synthetic variables (principal components) that have the best 
explanatory power for the system are selected for regression modelling. It can effectively filter out the 
information overlap caused by multiple correlations and improve the accuracy of system modelling.  

The PLS model consists of two parts: external relations and internal relations. There are l  

dependent variables  lyy ,,1   and m  independent variables mxx ,,1  . Based on the n  sets of 

observed data, the dependent variable matrix lnY   and the independent variable matrix mnX   are 

constructed. According to the PLS algorithm, the principal components are extracted and X andY  are 
decomposed to get the external relation model: 

EptETPX
T

i

T
tt

T  
1

,   (4) 



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where rmP   and rlQ   are the load matrices for X and Y , respectively, and mnE  and lnF   are the 

residual matrices for X and Y , respectively. The matrices  rttT ,,1   and  ruuU ,,1  are 

the score matrices of the matrices X and Y, respectively, where the elements rtt ,,1   and ruu ,,1   

are the extracted principal components. 

The external relational model guarantees that T  and U   represent the data tables X  and Y  as 
closely as possible. The internal relational model ensures that the principal component T  of the 

independent variable has the strongest explanatory power for the principal component U of the 
dependent variable. Therefore, the following regression model can be established for the principal 
components: 

RTBU  , (6) 

where  rbbdiagB 1  is the regression factor matrix and R is the U residual matrix. The 
regression coefficients in the PLS model can be calculated by nonlinear iteration or using singular 
value decomposition. 

As a regression model, the accuracy of the PLS model depends on the quantity and quality of the 
modelling data. Therefore, if the measurement data are inaccurate, or if the model prediction exceeds 
the range of modelling data, the model prediction results will be inaccurate. This means that the 
application scope of the PLS model will be limited by the capacity of the modelling data, and the 
generalization ability of the PLS model will be poor.  

 

Figure 5. Structure of the thermal deformation hybrid model. 

5. Thermal deformation prediction based on hybrid modelling method 
The mixed use of computation models and regression models can achieve the effect of complementing 
each other. The PLS-based regression model can extract unexplained internal complex information 
from the computation model. And the computation model based on the finite element can provide the 
prior knowledge of thermal deformation and improve the generalization ability of the regression 
model. Based on the above design concept, the design framework of the thermal deformation hybrid 
model of the high-speed motorized spindle is shown in figure 5. The overall model consists of a finite 
element model and an error compensation model. The PLS method is used to predict the thermal 
deformation error between the output of the finite element model and the experimental data. Next, the 
output of the finite element model and the error compensation model are superimposed to obtain a 
hybrid model of thermal deformation. The hybrid model effectively combines the merits of the 



8

1234567890‘’“”

3rd China-Romania Science and Technology Seminar (CRSTS 2018) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 399 (2018) 012017 doi:10.1088/1757-899X/399/1/012017

 
 
 
 
 
 

computation model and the regression model. Using the finite element model as the basis of the hybrid 
model, the extrapolation and generalization capabilities of the model have been improved, and the PLS 
model has been used to make up for the computational error, which has greatly improved the 
prediction results of the thermal deformation model. 

The specific steps for the establishment of the thermal deformation hybrid model are as follows:    
 Based on the heat loss experiment, the heat transfers coefficients and thermal loads calculated 

at different speeds of the motorized spindle are loaded as boundary conditions into the spindle 
model. According to the thermal stress analysis, the computation model of thermal 
deformation of the high-speed motorized spindle during thermal steady state is obtained. 

 A regression model is established based on experimental data collected at different speeds. 
The input of the model is the temperature rise of each temperature measuring point, and the 
output of the model is the error between the experimental data and the computation results 
from the finite element model. 

 After calculating the cross-validation, the principal components for regression modelling is 
selected, the principal component regression model is reduced to the original variable, and the 
thermal deformation error compensation model based on the PLS method is obtained. 

 The performance of the thermal deformation hybrid model is evaluated based on the 
experimental data. If the predicted results are not good, then the PLS model is re-trained and 
the new principal components are selected until the result is good. 

 

Figure 6. Displacement sensor position. 
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6. Thermal deformation experiment and result analysis 

6.1. Experiment introduction 
The experiment used the Lion Precision's spindle rotation error analyser for thermal deformation 
measurement. The entire measurement system includes high-resolution capacitive displacement 
sensors, precision standard balls, adjustable probe holders, and data acquisition components. The 
capacitive sensor driver has a resolution of up to 0.4 nanometers, which provides the most accurate 
spindle thermal deformation measurement. The precision standard ball is mounted on the spindle 
holder, the dynamic displacement of the standard ball is measured by the capacitance probe, and the 
data of each capacitive displacement sensor are combined and analysed to obtain the measurement 
result of thermal deformation. The displacement sensor installation position is shown in figure 6. A 
capacitive probe is installed on the bottom of the spindle to measure the axial Z-axis movement. A pair 
of right-angled capacitive probes is mounted on top of the precision standard balls to measure the 
radial X-axis and Y-axis movements. 

A total of 7 temperature measurement points are arranged on the spindle to obtain the temperature 
field of the spindle. The Elite series TMP190 temperature sensor module is used. The position of the 
temperature measurement point is shown in table 4. 

Table 4. Temperature sensor location. 

No. Measuring position 

1 Spindle base 

2 Spindle shaft head 

3 Spindle housing middle 

4 Spindle housing near front spindle bearing right side 

5 Spindle housing near front spindle bearing left side 

6 Spindle housing near rear spindle bearing right side 

7 Spindle housing near rear spindle bearing left side 

 
Considering that the temperature field and the thermal deformation are different at different 

rotational speeds, different spindle speed experiments are designed. The machine speed range is 2,000-
12,000 r/min. In each set of fixed speed experiments, under the condition that the main shaft is fully 
lubricated and the cool system is turned on, the rotation speed is set until it reaches the thermal steady 
state  

The laser sensor can achieve non-contact measurement of a measuring distance between 20mm.  

  

Figure 7. TC series of multi-channel 
temperature tester. 

Figure 8. LK-G5000 CMOS laser sensor. 
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The principle of diffuse reflection is used for laser acquisition. The wavelength of the light source 
is 655 m  and the diameter of the laser light is 50 m . Select LK-G5000 high-accuracy CMOS laser 

sensor, TC series multi-channel temperature tester and seven temperature sensors to measure the 
thermal deformation and temperature rise of the spindle (see figures 7 and 8). 

Experimental measurement conditions: room temperature 25 °C, using progressive speed. The 
temperature field data and spindle thermal distortion data at different rotation speeds are measured 
when the spindle is unloaded. The spindle speed starts from low speed and continuously increases the 
spindle speed. Keep running at a required speed until the relative stability of the heat balance and 
thermal displacement is reached at this speed. By comparing the thermal displacement of the motor 
spindle with the temperature rise and the simulation, the correctness of the simulation result is 
verified, and the experimental basis can be provided for further calculation of the thermal error. 

6.2. Model simulation and verification 
 

(a) (b) 

(c) (d) 

Figure 9. Hybrid modelling thermal deformation prediction results and comparison with 
other models in Z-direction. (a) Comparison between predicted X-direction thermal 

deformation and experimental data. (b) Comparison between predicted and 
experimental data of thermal deformation in Y direction. (c) Comparison between 

predicted and experimental data of thermal deformation in Z direction. (d) Comparison 
of the Z-direction thermal deformation hybrid model with other models. 
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This experiment measured the thermal deformation at different speeds from 2000-12,000 r/min and 
recorded the temperature rise at different speeds. A total of 50 sets of data were measured in the 
hybrid model results. 20 sets of data were used to establish a hybrid model, and the remaining 30 sets 
of data were used to test the accuracy of the hybrid model and the individual models. 15 sets of data 
were within the scope of model building data (internal data). The other 15 groups were outside the 
scope of the modelling data (external data). 

Figure 9 (a), (b), (c) shows the overall prediction effect of the hybrid model in the three directions 
of X, Y, Z thermal deformation of the motorized spindle. It can be seen from the figure that the 
predicted thermal deformation of the hybrid model fluctuates within a certain range of experimental 
data, and the overall trend is similar to the experimental data. By calculation, the maximum prediction 
error in X direction is 0.6598 um, the minimum error is 0.1026 um, the maximum error in Y direction 
is 10.3142 um, the minimum error is 1.2752 um, the maximum error in Z direction thermal 
deformation prediction is 11.0347 um, and the minimum error is 0.8409 um. 

The fitting curves of the predicted values and experimental data of each model of external data are 
shown in figure 9 (d). Since the thermal deformation in the Z direction is the largest, only the 
prediction of each model in the Z direction is shown, the other directions being similar to the Z 
direction. It can be seen from the figure that compared with the predicted value obtained by using the 
computation  model and regression model alone, the predicted value of the hybrid prediction model 
corresponds better with the experimental data, and the error of the computation model is controlled 
between 6.433-11.725um. The prediction error of the regression model is controlled between 3.534-
7.245um, and the prediction error of the hybrid modelling is within 2.312-6.356um. It can be seen 
from the figure that the hybrid model obtains higher prediction accuracy because the disadvantages of 
larger errors of the computation model are compensated by the PLS modelling method. The prediction 
results of the hybrid modelling can effectively follow the changing trend of the thermal deformation of 
the motorized spindle, basically around the experimental data distribution. The regression modelling 
and the computation modelling have large deviations from the experimental data and the error of the 
computation model is the largest. The hybrid modelling has higher prediction accuracy and improves 
the prediction accuracy. The data comparison results are shown in the table 5 below. 

Table 5. Mean absolute error (MAE) of model predictions. 

Model 
Regression  
modelling 

Hybrid  
modelling 

Computation 
 modelling 

MAE 

Internal data 
 (X/Y/Z) 

0.5396um 
/0.9107um/ 
1.1321um 

0.1443um 
/1.3016um 
/1.4885um 

0.1773um 
/1.5479um 
/3.7069um 

External data 
(X/Y/Z) 

0.4528um 
/0.8443um 
/6.1225um 

0.0938um 
/1.2437um 
/1.1549um 

0.2256um 
/1.5532um 
/7.396um 

 
By calculating the mean absolute error of the model, the internal and external data models are used 

to predict the effect of regression modelling, computation modelling and hybrid modelling. As can be 
seen from table 5, the hybrid model has not much effect on the internal and external data of the model. 
The mean value of the model prediction error is lower than that of the regression model. The overall 
prediction effect of the hybrid modelling is better. The PLS regression model has better prediction 
effect than the external data model in the prediction of the data, and there is a large difference in the Z 
axis. This is a limitation of the regression model modelling, and it has good prediction effect only 
within the scope of modelling data. By adding the theoretical model, the ductility of the model is 
enhanced, and the accuracy of thermal deformation prediction is improved. 
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7. Conclusions 
In this paper, by means of the analysis of the advantages and disadvantages of the computation model 
and the regression model, a hybrid prediction model is proposed in order to improve the thermal 
deformation prediction of the motorized spindle and the following conclusions are obtained: 

 the hybrid model can be used to analyse  the thermal deformation of the motorized spindle 
within a large data range; 

 the hybrid model combines the advantages of the computation model and the regression model, 
and hence achieves higher prediction accuracy; 

 the hybrid model prediction is better than the computation model and the regression model; it 
is proved that the hybrid model can make up for the prediction error of other models, and 
make the real-time thermal deformation compensation be possible during operation. 
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