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Abstract. In this paper, the dynamic behaviors of a elastic rod connected by a joint with 

clearance of deployable truss structures are investigated. A one-dimensional cantilever with 

joint support is examined in the deployable truss structure. These formulations consist of the 

nonlinear joint dynamic stiffness model and damping models are formulated and the dynamic 

characteristics of free-vibrating structures are estimated. The natural frequency transitions are 

investigated by considering the contact and noncontact conditions of the clearances, then the 

formulation of dynamic stiffness model is obtained. The friction models are mathematically 

formulated and simplified to make them easy to calculate. The impact damping models are 

formulated using the linear envelope of the time response and it can be negligible when the 

speed is small. The dynamic characteristics can be estimated by integrating these models and 

formulations using the energy loss factors. Experimental evaluations show the dynamic 

characteristics and demonstrate the validity of the formulations.  

1. Introduction 

The deployable space structures have characteristics of large size high precision [1-4]. The deployable 

structures not only satisfy the mission requirement but also to meet the good mechanical properties. 

With the characteristics of light weight, high storage ratio and enough stiffness, the truss become the 

preferred deployable structures[5,6]. The ring truss structure in the deployable antenna often need the 

hinge to connect each other, however, the hinge gap is inevitable. The gaps in the hinge make the truss 

structure to show a complex dynamic behaviour[7,8]. Therefore, it is important to study the 

characteristics of the joints in the ring truss support structure. 

 
Figure 1. Truss antenna reflector. 

 

In the research of hinge structure, scholars have done a lot of work. Hu et al. [9] put forward three 

scientific problems on the nonlinear dynamics and control of the large ring truss reflector structure. 

The effective of gaps in the nonlinear joint is studied. Yoshida [10] study the clearance hinge in the 
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space structure, and the mechanical model of the hinge is established. Wang et al. [11] study on the 

nonlinear dynamic problems of two - bar structures with clearances. Lion et al. [12,13] uses the 

amplitude frequency response function to identify the dynamic parameters of the hinge. Crawley et al. 

[14-17] applies force state mapping method (FSM) to the parameter identification of nonlinear hinge, 

and uses the method to identify the model and parameters of spacecraft joint structure. The time 

history of the restoring force and the time history of the state variables are measured, and the least 

square method is used to fit the relationship between the restoring force and the state variable. 

Stiffness and damping are important factor in determining the dynamic characteristics of hinge 

structure, this paper will analyze the radial dynamic characteristics of the planar revolute hinge on the 

connection of deployable ring truss antenna structure. The radial dynamic model of the hinge is 

established, and the dynamic stiffness and damping of the hinge are analyzed. Meanwhile, the relevant 

dynamic model is verified by experiments. 

2. Radial dynamic stiffness of hinge 

The ring truss deployable antenna is composed of a large number of bars and joints, and the whole 

structure is divided into mesh, the front net, ring truss tension ties and rear net, as shown in Figure2. 

The ring truss is the frame of the antenna, which plays a role in supporting surface and keeps the 

antenna structure stable.  

 
Figure 2. Sketch of circular truss 

 

The stiffness of the joint is an important factor to determine the dynamic characteristics of the 

jointed structure. The assembly of the hinge and the pin provides the condition for the existence of the 

gap, and the gap between the hinge and the pin is inevitable in the process of manufacture, assembly 

and transportation. 

 
Figure 3. Sketch of rotary hinge 

In this section, the radial dynamic characteristics of the planar revolute hinge in the annular truss 

antenna support structure are analyzed. 

2.1. Static stiffness of hinge 

Hertz contact theory is a theory of elastic non coordination of contact problems, the three-dimensional 

cylindrical contact is simplified to a two-dimensional contact, in Figure 4. The Hertz contact force 
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model is based on the complete elastic deformation, which mainly deals with the quasi-static contact 

problem of the elastic body, however, the energy loss during contact is not considered. 

 
Figure 4. Contact state of rotary hinge 

 

The Hertz contact force model is based on the complete elastic deformation, which mainly deals with 

the quasi-static contact problem of the elastic body, however, the energy loss during contact is not 

considered. 

The Hertz contact force model can be described by a nonlinear spring 

                                                                       
n

jn kF                                                               (1)
 

where   is the elastic deformation, jk is the contact stiffness coefficient, the expression is as 

follows: 
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The static stiffness is the relative stiffness at the moment of contact between the hinge and the pin. 

2.2. Dynamic stiffness of hinge 

The stiffness of the hinge under external excitation is studied, it is necessary to establish the dynamic 

stiffness model of clearance hinge. The natural frequency and dynamic stiffness of the hinge is derived. 

In figure 5, the motion of the clearance hinge can be divided into three states: gap state, transition state 

and contact state. 

 

 
Figure 5. a) Gap state. b) Transition state. c) Contact state 



4

1234567890‘’“”

2nd International Conference on Manufacturing Technologies (ICMT 2018) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 398 (2018) 012008 doi:10.1088/1757-899X/398/1/012008

 

 

 

 

 

 

In the contact and noncontact conditions, the equations of motion for the equivalent systems are 

given as 

                                                                00  LL wkwm    Lw                                                                     

(4)
 

                                                      011 kkwkwm LL    >Lw                                                                 (5)
 

where Lw  is the acceleration of m , Lw  is the deflection of m . 

In the state, the displacement of the mass can be set 

                                                         tCtCwL 0201 cossin                                                                            (6)
 

where 1C , 2C  are coefficient related to initial condition. 0  is the circular frequency of the hinge in 

the gap state. The initial condition of the hinge motion is assumed to be 0t , 0Lw , 0vwL  , 

001 /vC  , 02 C . When the hinge is in the transition state, according to the displacement continuity 

condition, 1tt  , cx  . Moreover, according to the law of conservation of energy, when the vibration 

displacement peak value is A, the potential energy is equal to the kinetic energy of the initial system 
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The duration of the gap state is calculated 
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where 1  is circular frequency of the contact state,  
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The duration of the contact state is 
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where   is the natural frequency ratio of contact state and gap motion state. 
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According to the literature [15], the natural frequency of the gap hinge structure is obtained by the 

superposition of the contact state and the gap state 
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In the process of the radial movement of the hinge, when the hinge is in the gap state, 00 k , and 

the natural frequency of the hinge can be expressed as 
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By Eq.14, the natural frequency of the hinge structure is directly proportional to the natural 

frequency of the contact section, meanwhile, the increase of the gap leads to the decrease of the natural 

frequency of the structure, furthermore, the natural frequency increases with the increase of amplitude. 

The amplitude under external excitation is 
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where the circular frequency of the gap hinge structure is n , k  is static stiffness,  is the circular 

frequency of external excitation,   is damping ratio. By Ref. [16], because the   is small, when the 
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exciting force is small, the denominator of Eq.15  is simplified, and the dynamic stiffness dk  is 

obtained 
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Can be obtained by Eq.16, the dynamic stiffness coefficient changes with the natural frequency 

and the external excitation frequency of the gap hinge structure as well as the dynamic stiffness 

coefficient changes with the gap size and amplitude. Figure6 and Figure7 show the trend of dynamic 

stiffness coefficient. The dynamic stiffness can be seen from the chart, the influence of the gap size on 

the dynamic stiffness coefficient is significant. 

      
        Figure 6. The trend of dynamic stiffness          Figure 7. The trend of dynamic stiffness 

        coefficient varying with frequency                     coefficient varying with amplitude and gap 

3. Energy dissipation of the joint 

The radial clearance of the pin-joint leads to the friction and impact when the vibration occurs. In 

order to model the joint damping in the hinge structure, it is necessary to analyze the radial energy 

dissipation. 

The assembly error leads to the existence of sliding friction on the side of the hinge, and the 

energy dissipation caused by the sliding friction under the action of the pF : 
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where  is the friction coefficient. 

The friction force not only exists on the side of the hinge, but also occurs on the contact surface. 

The energy dissipation caused by contact friction can be obtained by analyzing the velocity of the 

contact surface. When the normal contact velocity is v , the contact half angle of the contact point is   

on the impact surface, the tangential velocity can be expressed in v . 

                                                                                           sinvv                                                                   (18)
 

There are two contacts in the hinge in a period, so the energy dissipation caused by the contact 

friction is expressed as: 

                                                                 dtdNvE
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where N  is the distributed contact force,  is the contact half angle, 1t is the starting time of contact, 

2t is the termination time of contact. 

Distributed contact force is: 
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where   is contact depth, R  is equivalent radius. 

The velocity of the contact points in the contact area: 
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where Rw
2-  . 

The energy dissipation caused by contact friction can be expressed as: 
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The hinge clearance leads to the relative motion between the components, and when the two parts 

collide with each other the energy dissipated is 

                                                                           
2

2

1
mvEimpact                                                                          (23) 

where v  is velocity before impact. 

Based on the above theory, the hinge radial energy dissipation produced by friction and impact  

can be expressed as: 

                                                           impactcontactslidedamp EEEE                                                    (24) 

The reduction of vibration caused by friction and collision can be measured by energy dissipation 

factor The energy dissipation factor is defined as the ratio of the energy dissipation to the total energy 

of a single cycle, so the energy dissipation factor D is: 
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where totalE  is total energy per cycle. 

The relationship between the energy dissipation factor and the damping ratio is derived by 

combining the damping concept in the structural dynamics. The total energy of the structure at the 

beginning of deformation can be expressed as: 
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where ia  is the displacement amplitude of periodic i , k  is the stiffness of the structure. The energy 

dissipation expressed by displacement amplitude in a period is 
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Therefore, the energy dissipation factor can be expressed as 
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The attenuation rate of structural vibration can be expressed as 
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When the damping is small, the relationship between damping ratio  and energy dissipation 

factor D is obtained based on power series expansion 
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Therefore, the energy dissipation factor is proportional to the damping ratio, both of which can 

reflect the change of structural damping. 

4. Radial dynamics experiment of the hinge 
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The dynamic experiment of the radial motion of the hinge structure is shown in Figure 8 and Figure 9. 

The external excitation of the hinge is sinusoidal, and laser sensor is used to acquire the displacement 

of hinge. The experimental part is the planar revolute hinge, the geometric dimensions as shown in 

Figure 10. The clearance is formed by matching the hinge size with the pin diameter, see table (1) for 

clearance data of hinge and column pin. Exert Sinusoidal excitation on the hinge, displacement of 

hinge radial vibration of will be acquired. 

        
Figure 8. Experimental equipment layout

                  
Figure 9.  Experimental equipment 

Table 1. Clearance value
 R2 R1 c 

3.0mm 
 
 

3.2mm 

2.1mm 
2.4mm 
2.5mm 
2.1mm 
2.4mm 
2.5mm 

0.45mm 
0.30mm 
0.25mm 
0.55mm 
0.40mm 
0.35mm 

 

 Figure 10.  Geometry of hinge 

When the excitation frequency is 5Hz, the clearance is 0.4mm, and the excitation amplitude is 

0.604mm, the relationship between the external excitation amplitude and the hinge amplitude is shown 

in Figure11. From the chart, the external excitation is affected by the hinge motion and the amplitude 

is reduced; The time to reach the peak value of the hinge lags behind the external excitation. When the 

clearance decreases when the 0.3mm amplitude increased sharply as the Figure12, corresponding to 

the hinge and the dynamic stiffness coefficient will increase, and the theoretical calculation is 

consistent with the trend. The theoretical calculation is in good agreement with the experiment. 

        
Figure 11. When the gap is 0.4mm, the hinge             Figure 12. When the gap is 0.3mm, the hinge 

amplitude varies with the excitation                              amplitude varies with the excitation
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Apply a sweep excitation to the hinge, as shown in Figure13. The sweep frequency range is 1Hz-

10Hz, the sweep time is 10s, and the clearance value is 0.4mm. The maximum amplitude of the 

external excitation is 0.604mm. In the initial stage, the input of 1Hz excitation, the amplitude of the 

hinge within a small range of shocks, when trigger sweep frequency, the amplitude of the hinge 

increases rapidly, thus it can be seen the excitation frequency promote the growth of the hinge 

amplitude, dynamic stiffness coefficient will decrease. Therefore, the external excitation increases the 

hinge dynamic stiffness coefficient and is consistent with the theoretical derivation. 

 
Figure 13. The amplitude variation of the hinge under swept frequency excitation

 

5. Conclusions 

In this paper, the dynamic stiffness coefficient and damping of the clearance hinge structure in the 

large space deployable antenna ring truss structure under the radial motion are studied, the formulation 

of the radial clearance hinge dynamic expression of stiffness coefficient is carried out and verified by 

experiment, and meanwhile the damping characteristic is analysed. The size of the gap has a 

significant influence on the dynamic stiffness coefficient. When the gap is large, the dynamic stiffness 

coefficient increases obviously. 
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