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Abstract. The paper deals with the linear and non-linear steady state periodic response 

estimation of isotropic cylindrical open shells. The displacement field of first order shear 

deformation theory has been employed and the analysis is based on finite element method. C0 

continuous, eight-noded serendipity quadrilateral shear flexible element with five nodal degrees 

of freedom has been used for the analysis. The geometric non-linearity is included in the analysis 

using von Kármán’s assumption for small strains and moderately large deflection. The governing 

equations of motion have been obtained in the time domain and the nonlinear periodic responses 

are obtained using shooting technique. The entire non-linear steady state frequency response 

curve consisting of stable and unstable regimes has been obtained employing shooting technique 

along with arc length and pseudo-arc length continuation schemes. The present method does not 

involve any apriori assumption on the participating modes. The comparison of linear and non-

linear frequency response curves reveals large differences between the two. Frequency response 

curve, response history and the phase plane plots have been obtained, for different aspect ratio 

(L/b), to explore the linear and non-linear forced vibration characteristics of cylindrical open 

shells. The asymmetric nature of the phase plane plots reveal significant higher harmonic 

contributions. With the increase in aspect ratio, thin open shells reveal increased peak amplitude 

in both linear and nonlinear analysis. The presence of secondary peak in the nonlinear frequency 

response for greater aspect ratio is due to modal interaction between first and higher modes. 

1.  Introduction 

Shells are among the most common structural elements used in many engineering structures, 

including pressure vessels, pipes, submarine hulls, wings and fuselages of airplanes, exteriors of rockets, 

missiles as well as integral parts of machines where they are subjected to dynamic loading and hence 

their vibratory response analysis is important for efficient, reliable and failure-proof designs. Thin 

cylindrical shells are used, particularly in the aerospace application, as it undergoes buckling/vibration 

either due to static/dynamic axial load or external pressure and sometimes both. Obtaining an effective 

design presents a difficult and challenging problem, hence a detailed analysis is required of a shell 

structure. The analysis of a shell is a challenging task, as it resists the load applied largely by its 

curvature, that is by just changing the curvature of the shell keeping the thickness and the material same, 

a totally different load carrying capacity can be obtained for the shell. Hence, parameters such as 

curvature, thickness and the boundary conditions play a crucial role in determining the behaviour of the 

shell. The peculiarities of shell structural behaviour, the difficulties of analysis, and the wide use of shell 

structures have instigated a large research effort in shell analysis. A shell is said to be geometrically 
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nonlinear if the strain-displacement relations are nonlinear. This paper deals with the linear and 

geometrically nonlinear forced vibration analysis of isotropic cylindrical open shells. 

Structural members such as shells often undergo large amplitude vibrations where the amplitudes are 

generally of the order of their thickness. The dynamic behaviour obtained based on linear strain-

displacement relations generally provide a conservative estimate and may be treated as the first 

approximation to the actual behaviour. The forced vibration characteristics obtained by considering the 

geometric non-linearity predicts a closer approximation of the actual dynamic behaviour. The combined 

effect of geometric nonlinearity and middle surface curvature for shell panels is expected to significantly 

alter the dynamic behaviour as compared to linear analysis. The need for non-linear steady state forced 

vibration response arises from the requirement of safe, optimal and efficient design of structural 

components which are in the form of cylindrical shells. 

Most of the research carried out are on free vibration characteristics of cylindrical shells whereas 

research on forced vibrations analysis of isotropic cylindrical shells are very limited. Alijani & Amabili 

[1] and Qatu, et al. [2], have carried out extensive literature reviews on the nonlinear vibrations of shells. 

Liew, et al. [3] presented a review article with bibliography documents, focussed on the developments 

in the vibration analysis of thin, moderately thick, and thick shallow shells. The nonlinear free flexural 

vibration behaviour of the isotropic/laminated orthotropic noncircular rings using the finite element 

approach and Newmark time marching scheme was investigated by Patel et al. [4-5] and reported 

softening nonlinearity. Kurylov and Amabili [6] analysed the non-linear forced vibration response of 

simply supported circular cylindrical shells. Alijani and Amabili [7] analysed the nonlinear forced 

vibrations of laminated circular cylindrical panels. Khan and Patel [8-9] carried out non-linear forced 

vibration analysis of bimodular plates and cylindrical panels based on modified shooting technique. The 

effect of boundary conditions on the nonlinear forced vibration response has been analyzed by Amabili 

[10]. The linear as well as geometrically non-linear steady state periodic response of cylindrical shell 

panels has been carried out by Khan, et al [11] by employing the displacement field of first order shear 

deformation theory based on finite element method. C0 continuous, eight-noded serendipity quadrilateral 

shear flexible element with five nodal degrees of freedom has been used in the analysis. 

From the literature review, it can be noted that most of the study on the non-linear steady state 

periodic response of cylindrical shells are based on methods requiring apriori assumptions on the 

participating mode. Further, it is observed that the convergence to a steady state solution is very slow 

by employing the direct integration approach. In addition, the steady state response cannot be ascertained 

in the direct time integration approaches. In this paper the nonlinear steady state periodic response of 

open cylindrical shell is analysed using the first order shear deformation theory. The governing equation 

of motion is solved using shooting method coupled with New Mark time marching scheme. The unstable 

portion of the non-linear frequency response curves are obtained using arc-length and pseudo-arc length 

continuation methods. A detailed parametric study is conducted to study the influence of aspect ratio 

(L/b) on the linear and nonlinear dynamic behaviour of isotropic cylindrical open shell. The differences 

between the linear and nonlinear frequency response curves have been analyzed. The phase plane plots 

and the steady state response history reveal unequal positive/negative half cycle time. The secondary 

peak in the frequency response of shell with L/b =2 is due to interaction of first and higher modes. 

2.  Governing Equations and Solution Procedure 

The geometry and coordinate system of an isotropic open cylindrical shell are shown in Figure 1. 

The coordinates x, y and z are along the meridional, circumferential and radial/thickness directions, 

respectively. The length, width, thickness, included angle and radius of the shell are L, b, h,  and r 

respectively.  
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Fig. 1 Geometry and co-ordinate system of open cylindrical shell 

 
The displacement field (𝑢, 𝑣, 𝑤) at a point(𝑥, 𝑦, 𝑧) is expressed as a function of middle surface 

displacements 𝑢0, 𝑣0, 𝑤0 and the independent rotations 𝜃𝑥 and 𝜃𝑦 of the meridional and hoop sections, 

respectively, using first-order shear deformation theory as: 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =  𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑥(𝑥, 𝑦, 𝑡) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) =  𝑣0(𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑦(𝑥, 𝑦, 𝑡)                                              (1) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) =  𝑤0(𝑥, 𝑦, 𝑡) 
Based on Sander’s shell theory, strain field in terms of mid-surface deformation variables can be 

written as: 

                         {ε} =  {εxx εyy γxy γxz γyz}T = {εP
L

0
} + {

zεb

εs
} + {εP

NL

0
}                             (2) 

where, 𝜀𝑃
𝐿, 𝜀𝑏, 𝜀𝑠 and 𝜀𝑃

𝑁𝐿 representing linear mid-surface membrane, bending, transverse shear and 

nonlinear mid-surface membrane strain vectors, respectively, are defined as: 
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,  

(3) 

The membrane stress resultant𝑁̅ =  {𝑁𝑥𝑥 𝑁𝑦𝑦 𝑁𝑥𝑦}𝑇, moment resultant 𝑀̅ =  {𝑀𝑥𝑥 𝑀 𝑀𝑥𝑦}𝑇 

and transverse shear stress resultant 𝑄̅ =  {𝑄𝑥𝑧 𝑄𝑦𝑧}𝑇vectors are related to the membrane 𝜀𝑝 = 𝜀𝑃
𝐿 +

𝜀𝑃
𝑁𝐿, bending 𝜀𝑏 and transverse shear 𝜀𝑠 strain vectors through the constitutive relation as. 
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{𝑁̅
𝑀̅

} = [
𝐴 𝐵
𝐵 𝐷

] {
𝜀𝑝

𝜀𝑏
},    𝑄̅ = 𝐸𝜀𝑠                             (4) 

 

where 𝐵𝑖𝑗 = 0 and the nonzero elements of 𝐴𝑖𝑗 , 𝐷𝑖𝑗 (i, j = 1,2,6) and 𝐸𝑖𝑗 (i, j = 4,5) for an 

isotropic shell are 

𝐴11 = 𝐴22 =
𝐸ℎ

1−𝜈2 ,     𝐴21 = 𝐴12 =
𝜈𝐸ℎ

1−𝜈2 ,      𝐴66 =
𝐸ℎ

2(1+𝜈)
  

𝐷11 = 𝐷22 =
𝐸ℎ3

12(1−𝜈2)
 ,      𝐷21 = 𝐷12 =

𝜈𝐸ℎ3

12(1−𝜈2)
 ,      𝐷66 =

𝐸ℎ3

24(1+𝜈)
 , 

 𝐸44 = 𝐸55 =
𝐸ℎ

2(1+𝜈)
 

                

(5) 

where [A], [D] and [B] are extensional, bending, and bending-extensional coupling stiffness 

coefficient matrices, respectively. [E] is the shear stiffness matrix. 

 

The total potential energy functional U consisting of strain energy and potential of the uniformly 

distributed transverse load is given by: 

 

𝑈 =
1

2
∬ (𝑑𝑇𝐾𝑑 +

1

3
𝑑𝑇𝐾1𝑑 +

1

6
𝑑𝑇𝐾2𝑑) 𝑑𝑥𝑑𝑦 − ∬ 𝐹𝑤0𝑑𝑥𝑑𝑦               (6) 

 

where [K] represents linear stiffness matrix, [𝐾1] and [𝐾2] are representing quadratic and cubic 

non-linear stiffness matrices, respectively. 

 

The kinetic energy of the shell is given by: 

 

𝑇 =
1

2
∬ (𝜌ℎ(𝑢̇0

2 + 𝑣̇0
2 + 𝑤̇0

2) +
𝜌ℎ3

12
(𝜃̇𝑥

2 + 𝜃̇𝑦
2)) 𝑑𝑥𝑑𝑦                   (7) 

 

 where ρ is the mass density of shell. Dot over the variables denotes the derivative with respect to 

time. 

Using a C0 continuous, eight-noded serendipity quadrilateral shear flexible shell element with five 

nodal degrees of freedom 𝑢0𝑖, 𝑣0𝑖, 𝑤0𝑖, 𝜃𝑥𝑖, 𝜃𝑦𝑖, the field variables are interpolated in terms of their 

nodal values and shape functions as: 

 

(𝑢0, 𝑣0, 𝑤0, 𝜃𝑥, 𝜃𝑦) = ∑ 𝑁𝑖
0(8

𝑖=1 𝑢0𝑖, 𝑣0𝑖, 𝑤0𝑖, 𝜃𝑥𝑖, 𝜃𝑦𝑖)                                                                           (8) 

 

Employing Hamilton's principle, using standard finite element assembly procedure and considering 

dissipative forces, the governing equation of motion can be written as: 

 

[𝑀]{𝛿̈} + [𝐶]{𝛿̇} + [𝐾 + (1 2⁄ )𝐾1(𝛿) + (1 3⁄ )𝐾2(𝛿)]{𝛿} = {𝐹}                                                       (9) 

 

where the damping matrix is defined based on Rayleigh proportional damping model and the 

damping matrix [C] is taken as  
[𝐶] = 𝛼̂[𝑀] + 𝛽[𝐾]                                         (10) 

The governing equations are solved using the procedure described in authors work [8-9] and are not 

presented here for the sake of brevity. The solution is started at frequency far away from resonance using 

New-Mark time marching and modified shooting method. At the frequency near bifurcation points 

where the modified shooting method fails to give converged solution the frequency response curve is 

continued using arc-legth/pseudo-arc length continuation schemes. 
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3.  Results and Discussion 

The influence of aspect ratio on the linear and nonlinear forced vibration response of isotropic 

cylindrical open shell subjected to uniformly distributed harmonic force with forcing frequency varied 

in the vicinity of first fundamental frequency has been investigated. The material of the shell is assumed 

to be Aluminium with Young’s Modulous 70 GPa, Density 2778 kg/m3 and poisons ratio 0.3. Based on 

mesh convergence a 10x10 mesh size is used to discretize the shell. The boundary condition choosen 

for the analysis is all edges simply supported. 

 The nonlinear frequency response curves for both positive and negative half cycle are presented in 

Fig. 2. It can be inferred from the positive/negative half cycle frequency response curves (Fig. 2 a) that 

the peak amplitude increase with the increase in aspect ratio (L/b). The nonlinear response amplitude 

for negative half cycle is significantly greater for L/b=1, 2 as compared to L/b=0.5 indicating that the 

difference in positive and negative half cycle stress amplitude is greater in the GNL analysis compared 

to the GL(Fig. 2 b) analysis. The peak amplitude also increases with the increase in aspect ratio for both 

GNL and GL. The percentage difference between GNL and GL increases with the increase in aspect 

ratio. 

The comparison of peak amplitude in the linear and nonlinear analysis for the positive half cycle 

reveals that peak amplitude in linear analysis is significantly larger compared to non-linear analysis, 

with the peak amplitude in the linear analysis being 1.09, 3.02 and 3.77 times the peak amplitude 

obtained from non-linear analysis for L/b = 0.5, 1 and 2, respectively. The peak amplitude in the linear 

analysis being 1.06, 2.13 and 2.98 times the peak amplitude obtained from non-linear analysis for L/b = 

0.5, 1 and 2, respectively for the negative half cycle. From the positive half cycle GNL response curve 

it can be observed that the peak amplitude for L/b = 1 and 2 are 2.37 and 4.53 times the peak value for 

L/b = 0.5 respectively. In the negative half cycle GNL response curve, the peak value for L/b = 1 and 2 

are 3.27 and 5.58 times the peak value for L/b = 0.5 respectively. 

 

The steady state response history in the linear analysis (Fig. 3 (b)) reveal equal positive/negative half 

cycle amplitude with equal time in tension and compression. In contrast the non-linear response history 

(Fig. 3 (a)) depicts greater negative half cycle time indicating that the panel is in inward motion for 

greater portion of the periodic cycle. The negative half cycle time is 1.12, 1.29 and 1.10 times the 

positive half cycle L/b = 0.5, 1 and 2, respectively. 

The phase plane plots (Fig. 4 (a) & (b)) corresponding to peak amplitude in the frequency response 

curves depict asymmetry for the nonlinear case which is due to significant higher harmonic 

contributions. The secondary peak in the nonlinear response curve for shell with L/b =2, is due to 

interaction of first and higher modes. 

4.  Conclusion 

The linear as well as nonlinear forced vibration response of isotropic cylindrical open shells have been 

obtained in time-domain using modified shooting technique and continuation schemes. The complete 

frequency response curves consisting of stable and unstable regimes have been obtained. It is apt to 

make a mention here that the direct time integration method fails to predict the unstable regimes. A 

detailed analysis has been carried out to analyze the influence of aspect ratio on the linear and nonlinear 

dynamic response of open cylindrical shells. Based on the analysis it is found that with the increase in 

aspect ratio the peak amplitude increases with the increase in aspect ratio for both linear and nonlinear 

analysis. It is concluded that the peak amplitude for linear analysis is considerable greater than that for 

nonlinear analysis and this difference increases with the increase in aspect ratio. It can also be concluded 

that the negative half cycle amplitude as well as cycle time is greater than the corresponding positive 

half cycle values with the nonlinear analysis. The nonlinear phase plane plots depict greater higher 

harmonic contributions. The secondary peak in the frequency response curves of L/b=2 is due to modal 

interaction between first and third mode. 
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(a) Geometrically Non-linear frequency response 

 

  

(b) Geometrically linear frequency response                                                                                                              

Fig. 2 Steady state forced vibration frequency response curves (a) Non-Linear, (b) linear of 
cylindrical open shell. (SSSS, b/h=100, b/r=0.1, Load=5 kPa, ξ=0.010) 
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(a)Non-linear response (b)Linear response 

Fig. 3 Non-Linear and linear steady state response history. 

 

  

(a)Non-linear response (b)Linear response 

Fig. 4 Phase-plane plots at forcing frequencies. 
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