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Abstract. This study presents a methodology to estimate the in-plane thermal conductivity of
copper clad board used in electronic applications. Experiments are performed in vacuum
environment and an inverse heat conduction problem (IHCP) is solved employing artificial
neural networks to estimate the in-plane thermal conductivity. A comparison of estimates of
thermal conductivity as obtained by solving the inverse problem using back propagation
artificial neural networks trained using two algorithms namely Levenberg-Marquardt and
Scaled Conjugate Gradient are presented.

1. Introduction

In electronic applications copper clad boards are used as substrate material for mounting electronic
components. The copper clad boards are etched to make printed circuit boards. These boards are in-
plane isotropic in nature. The objective of the present study is to estimate the in-plane thermal
conductivity (k, =k, = k) of copper clad boards by solving an inverse heat conduction problem (IHCP)

using steady state temperature measurements. The inverse analysis is performed using
backpropagation artificial neural networks (ANNs) employing both Levenberg-Marquardt and Scaled
Conjugate Gradient algorithms.

There are different techniques proposed by researchers in the literature which are implemented to
solve a variety of inverse problems. Beck [1] proposed a nonlinear parameter estimation technique to
estimate the thermal transport properties such as thermal conductivity and volumetric heat capacity of
solids simultaneously under transient conditions. Garnier et al. [2] introduced a novel technique to
carry out surface temperature measurements on the test specimen to estimate thermal properties of
composites. The advantages of parameter estimation techniques in terms of more information and
faster results in comparison with other steady state techniques such as guarded hot plate or transient
methods such as line source method, flash method etc. were brought out. Sawaf and Ozisik [3]
performed inverse analysis for the simultaneous estimation of the principal thermal conductivities of
orthotropic materials using conjugate gradient method and Levenberg-Marquardt method. Mejias et al.
[4] carried out a comparative study on non-linear parameter estimation techniques like conjugate
gradient method and Levenberg-Marquardt method for estimating thermal conductivities of an
orthotropic solid by solving an inverse problem. Gobbé et al. [5] conducted an experimental study for
the measurement of thermal conductivity of multilayer orthotropic media characterized by isotropic
behaviour along planes parallel to layers.
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Artificial neural networks have now been used extensively for solving inverse heat transfer
problems. Krejsa et al. [6] presented the advantage and limitations of various back propagation
algorithms that are implemented to obtain the successful solution of inverse heat conduction problems
using ANNSs. Cortés et al. [7] harnessed the capability of ANN for solving the inverse problem to
retrieve the heat source generation term of the hot plate in a guarded hot plate apparatus. Chanda et al.
[8] presented a novel methodology for the simultaneous estimation of the thermal conductivities along
principal directions of an anisotropic honeycomb composite by solving an inverse heat conduction
problem using ANN trained with Levenberg-Marquardt algorithm.

The literature review shows the immense capabilities of inverse methodology for estimating the
thermal conductivities. Also ANNs have been successfully employed to solve inverse heat transfer
problems. These facts motivate to undertake the present study. Hence, the present study involves
numerical simulation of direct problem, temperature measurements using of steady state experiments
and estimation of in-plane thermal conductivity using artificial neural networks trained using
Levenberg-Marquardt and scaled conjugate gradient algorithms.

2. Direct problem
The direct problem is formulated to simulate the exact experimental conditions numerically and to
obtain the required temperature distribution. The copper clad test board is modeled as a homogenous
and in-plane isotropic board withk, =k, =k, where the in-plane thermal conductivity need to be
determined and out-plane thermal conductivity k. is already known. Commercial software Ansys
Fluent is employed for solving the direct problem. The governing equation for the direct problem is
given by equation (1).
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where k. ,k, and k. are the thermal conductivities in X, y and z directions. The direct problem

geometry consists of a square board of dimensions 180x180x1.60mm with a foil heater fixed at the
centre of the top surface of the board. The whole assembly is mounted on a copper frame which serves
as a heat sink. The direct problem geometry is depicted in figure 1.

Figure 1. Geometry for direct problem simulation

2.1. Meshing of direct problem geometry
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The direct problem geometry is discretised into quadrilateral cells. Regular auto meshing with
proximity option is used to mesh the geometry. A grid independence study is conducted to obtain the
optimum number of cells to save the computational time while not affecting the accuracy of the
solution. The results of the grid independence study are shown in figure 2. A mesh with 0.24 million

nodes yielded grid independent results, hence it was used for the present study.
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Figure 2. Grid independence study

2.2. Boundary conditions

The following boundary conditions are imposed on the direct problem,
e A heat flux of 1111 W/m®is applied to heater domain.
e [sothermal condition (298 K) is imposed on copper frame.

e All exposed surfaces of copper clad board except the surface in contact with the copper frame
are given adiabatic condition.

2.3. Direct problem solution
The governing heat conduction equation is solved using Ansys Fluent. The convergence criterion is
said to be reached when the temperature residuals fall below 107,
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Figure 3. Temperature contour for the simulation case
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The results for a sample simulation case with &, =k, =k = 10W/mK and &, = 0.34W/mK is shown in

figure 3. As seen in figure 3, the temperature contour assumes a circular profile implying equal heat
transfer in the in-plane direction which corroborates well with the laws of heat transfer. The
temperature is maximum near the heater and appreciable variations of temperatures are observed along
both X and Y directions to a certain distance after which appreciable temperature gradients do not
exist as depicted in figure 4. These temperature gradients hold the key to the successful estimation of
thermal conductivity.
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Figure 4. Temperature profile along X and Y axis of test sample
3. Experimental setup and methodology

The photograph of the entire experimental setup is depicted in figure 5. It consists of a vacuum
chamber that develops a vacuum level of 10 mbar with the help of vacuum pumps.

. Vacuum chamber 5. Fluid feedthrough

1

2. Electric feedthrough 6. Thermocouple feedthrough
3. Water cooler for diffusion pump 7. Cold fhuid circulator

4. Dc power supply 8. Data acquisition system

Figure 5. Photograph of the experimental setup
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The vacuum is maintained to eliminate convection losses. A square copper frame along with an
aluminium cold plate serves as heat sink. A constant temperature water bath is used to circulate cold
fluid to aluminium plate to maintain it at a constant low temperature.
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Figure 6. Locations of thermocouples in the test sample

T type thermocouples are fixed at the locations on the top surface of the test as shown in figure 6.
A foil type heater is placed at the middle of the board (test sample). A low emissivity sheet is used to
cover all the exposed surfaces of the board to minimize radiation losses along with a multilayer
insulation cover. This entire test assembly is placed in the vacuum chamber. A vacuum level of 10~
mbar is maintained in the chamber. The foil heater is energized to 1W and the sink is kept at 25 °C.
The steady state is deemed to be achieved when the temperature sensor readings do not change by
+0.1° C for a time period of one hour. These steady state temperatures are used for the estimation of
thermal conductivity of copper clad board by solving the inverse problem using ANN. Details of the
experimental set up are provided in study by Chanda et al. [8]. More details are omitted for the sake of
brevity.

An uncertainty analysis is carried out to determine the uncertainty in both measured and derived
quantities. For the direct measurements like temperature, voltage, current and vacuum pressure the
least count of the instruments are taken as uncertainty. Uncertainty in the derived quantities i.e. power
is evaluated using equation (2) as given by Venkateshan [9].

o= oo jl(a_f’a j 2
P oV v ol I (2)

where o is the uncertainty in measurement, P is the power, V is the voltage and I is the current. The
results of the uncertainty analysis are given in table 1.

Table 1. Uncertainties in measured and derived quantities

Sl. no. Quantity measured  Uncertainty
1 Temperature +0.5K
2 Voltage +0.001V
3 Current +0.0001A
4 Power 0.102%
5 Vacuum pressure 10 mbar
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4. Inverse methodology and artificial neural network

The inverse methodology involves the solution of inverse heat conduction problem to obtain the in
plane thermal conductivity using ANN where the experimental temperatures are fed as inputs to the
ANN.

Artificial neural networks are computational structures used to simulate nonlinear and complex
relationships between input and output data. By mimicking the human brain ANNs can identify the
correlated patterns between inputs and outputs. Therefore ANNSs trained for sample set of inputs and
outputs can be used to predict the outputs when presented with input data set in the similar range.

In the present study artificial neural network based on feed forward back propagation principle is
implemented. Temperature data at nine pre assigned locations are used as inputs and in-plane thermal
conductivity as output of the neural network. A neuron independence study is undertaken to determine
the number of neurons required in the hidden layer of the artificial neural network to accurately
simulate the problem under consideration. Using direct problem simulations, 300 different values of
k. =k, =k lying in the range from 0.5 to 15 W/mK is generated. Out of these, 210 samples (70%)

are used for training and 90 samples (30%) for testing the neural network. The number of hidden
neurons is varied from 3 to 12. Using performance metrics such as mean relative error (MRE) and
correlation coefficient (R”) as given by equation (3) and equation (4), the optimum number of hidden
neurons is determined.
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Results of the neuron independence study are given in table 2.

Table 2. Neuron independent study results

No. of
SL.no.  hidden MRE R’
neurons
1 3 0.5786  0.9458
2 5 0.5728  0.9332
3 7 0.6098  0.9371
4 9 0.8461  0.9387
5 10 0.4985  0.9568
6 12 0.9134  0.9012

A network with 10 neurons in the hidden layer is found to have lowest MRE and highest R* values of
0.4985 and 0.9568 respectively and is used for the estimation of in-plane thermal conductivity.

5. Results of the estimation of thermal conductivity of copper clad board

As stated earlier, the test specimen is an in-plane isotropic copper clad board of dimensions
180x180x1.6 mm. Steady state experiments are performed on the test sample instrumented with T-
type thermocouples placed at pre-assigned locations. These steady state temperatures are used as an
input to the inverse model. The training range of ANN and the search range used in this problem for
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performing parameter estimation has been limited to 2 <k < 15 W/mK. The artificial neural network
used is trained with a data set comprising of 210 samples obtained by simulating the direct problem in
the range as stated earlier, with temperatures as inputs and thermal conductivities as outputs.

Artificial neural network used in this study is trained using the feed forward backpropagation
technique. The algorithms employed to train the ANN in the current study are Levenberg - Marquardt
algorithm and scaled conjugate gradient algorithm with back propagation of errors. Levenberg -
Marquardt algorithm is one of the robust algorithms implemented by many researchers because of its
efficacy in retrieving the parameters of interest from inverse problems. Scaled conjugate gradient
algorithm utilises less computational resources. The tan sigmoid transfer function is applied to all the
neurons in the hidden layer and pure-linear to the neurons in the output layer. A single hidden layer
network with 10 neurons is used in the network. The neural networks are trained for 1000 epochs. The
results of the estimated values of thermal conductivity as obtained from ANNs trained using two
different algorithms are listed in table 3.

Table 3. Retrieved values of thermal conductivity

. Thermal
Sl. no. Algorithm conductivity(W/mK)
1 Levenberg - Marquardt 10.08
2 Scaled conjugate gradient 9.60

Figure 7 shows the parity plot with error bars depicting the comparison of measured temperatures
with those obtained from direct problem simulation using the retrieved value of thermal conductivity
using Levenberg - Marquardt algorithm and scaled conjugate gradient algorithm. The error bar
corresponding to maximum measurement error in temperature i.e. 0.5 K
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Figure 7. Parity plot of measured and simulated temperatures of copper clad board

As evident from figure 7, the temperature values obtained from simulation and measurement agrees
well with each other. The Levenberg - Marquardt algorithm gives a slightly better approximation than
scaled conjugate gradient algorithm. The bias free plot ensures that the governing physics has been
captured well in the model. The thermal conductivity of the copper clad board estimated by using this
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technique agrees well with that reported by Azar and Graebner [10]. Therefore the present study using
inverse methodology employing ANN is able to retrieve the in-plane thermal conductivity of copper
clad board successfully.

6. Conclusion

The present study focused on estimating the in-plane thermal conductivity of copper clad board by
employing synergistic combination of direct problem solution, experiments and inverse methodology
employing artificial neural networks using Levenberg - Marquardt algorithm and scaled conjugate
gradient algorithm. Two ANN models trained using different algorithms namely Levenberg -
Marquardt and Scale Conjugate Gradient with 210 sample data obtained from direct problem
simulations were used to retrieve thermal conductivity from experimental temperature data. Both the
ANNSs were found to predict the thermal conductivity values with good accuracy. It was also seen that,
ANN trained using Levenberg Marquardt algorithm out performed that trained using Scale Conjugate
Gradient algorithm slightly in terms of predicted estimates.
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