
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

ACMME 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 394 (2018) 052024 doi:10.1088/1757-899X/394/5/052024

 
 
 
 
 
 

Time Series Forecasting of Temperatures using SARIMA: An 
Example from Nanjing 

Peng Chen1, *, Aichen Niu1, a, Duanyang Liu2, Wei Jiang3, Bin Ma1 
1Jiangsu Meteorological Information Center, Nanjing, China 
2Jiangsu Meteorological Observatory, Nanjing, China 
3Jiangsu Meteorological Climate Center, China 

*Corresponding author e-mail: 409856986@qq.com, aai.nwork@hotmail.com 

Abstract. Time series modelling and forecasting – a method that predicts future values by 
analysing past values – plays an important role in many practical fields. In this paper, we analyse 
the monthly mean temperature in Nanjing, China, from 1951 to 2017, using SARIMA (Seasonal 
Autoregressive Integrated Moving Average) techniques. Data from 1951 to 2014 are used as the 
training set, while data from 2015 to 2017 are used as the testing set. A detailed explanation of 
model selection and forecasting accuracy is presented.  The results show that the proposed 
research approach obtains good forecasting accuracy. 

1.  Introduction 
The main goal of time series modelling is to collect and analyze past values to develop appropriate 
models that describe the inherent structure and characteristics of the series [1]. Time series forecasting 
is the use of certain model to forecast future values based on past observed values, and thus can be 
understood as a method for predicting future values by understanding past values [2]. Numerical weather 
forecasts use atmospheric models to predict future weather conditions based on current weather 
conditions [3, 4, 5]. Unlike numerical weather prediction, time series forecasting uses a model to predict 
future values based on past values. Owing to the importance of time series forecasting in countless 
practical fields, researchers should pay proper attention to fitting an appropriate model to the time series. 
Over the year, many intelligent time series models have been developed in the literature to improve the 
accuracy and efficiency of time series forecasting. One of the most widely used and recognized statistical 
forecasting time series models is the Autoregressive Integrated Moving Average (ARIMA) model. The 
ARIMA model is well-known for notable forecasting accuracy and efficiency in representing various 
types of time series [6] with simplicity as well as the associated, Box–Jenkins methodology for optimal 
model construction. The basic assumption made in implementing this model is to assume the time series 
is linear and follows a statistical distribution, such as the normal distribution [1]. For seasonal time series 
forecasting, Box and Jenkins [7] proposed a quite successful variation of the ARIMA model called the 
Seasonal ARIMA (SARIMA) model. 

Air temperature is a common meteorological variable indicative of how hot or cold the air is. It not 
only affects the growth and reproduction of plants and animals, but also has an influence on nearly all 
other meteorological variables, such as the rate of evaporation, the relative humidity, wind speed, wind 
direction and precipitation patterns. In this paper, we analyze the monthly mean temperature in Nanjing, 
a city in the southeast of China, during 1951–2017. The monthly mean temperature during 1951–2014 
is used as the training set, while that during 2015–2017 is used as the testing set. To evaluate the forecast 
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accuracy, as well as to compare the results obtained from different models, the mean-square error (MSE) 
is calculated. Section 2 describes the data and briefly discusses the ARIMA method to time series 
modelling and forecasting. Section 3 reports and interprets the results obtained from this method, 
evaluates the accuracy of the fitted forecasting models and compares the different models fitted to the 
time series. Section 4 offers discussion and conclusions. 

2.  Data and methods 
The data used in this study are the monthly mean temperature of Nanjing from January 1951 to 
December 2017. For the monthly mean temperature, data from 1951 to 2014 are used for training, while 
data from 2015 to 2017 are used for testing. The original temperature data are from the automatic 
weather station in Nanjing, collected on an hourly basis, and there are no missing values. Meanwhile, 
the monthly mean temperature data are from the original observed temperature data. The longitude and 
latitude of the automatic weather station is 118°54′00″ and 31°56′00″, respectively. The time series of 
the monthly mean temperature is plotted in Figure 1. 
 

 

Figure 1. Time series of monthly mean temperature in Nanjing, China. 
 
Seasonal ARIMA model (SARIMA) is formed by adding seasonal terms in the ARIMA models listed 

above. SARIMA models are written as 
 

ARIMA (p, d, q) (P, D, Q) m                                                     (1) 
 

Where (p, d, q) and (P, D, Q) m are the non-seasonal and seasonal part of the model, respectively. 
The parameter m is the number of periods per season. The seasonal part of the model is very similar to 
the non-seasonal part, but it is involved in backshifts of the seasonal period. Using available dataset, the 
ARIMA model is finalized by changing the values of p, d and q. To determine the parameters of an 
ARIMA model, Akaike’s Information Criterion (AIC) is widely used. It is given by 

 
AIC (p) = nln (RSS / n) + 2K                                                      (2) 
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Where n is the number of data points and RSS is the residual sums of squares. The model with the 
minimum AIC value will be selected as the best forecasting model. Another method to determine 
appropriate parameters of an ARIMA model is to analyse auto correlation function (ACF) and partial 
autocorrelation function (PACF) plots. 

3.  ARIMA modelling of temperature time series and results 
This section describes the proposed ARIMA model and presents the processes of model selection. The 
first step is to formulate a class of models and assume certain hypotheses. The next step is to estimate 
the parameters of this identified model. Sections 3.1–3.4 describe all the steps in detail. 

3.1.  Step 1 
In this process, the data should be plotted to identify any unusual values. To stabilize the variance, data 
need to be rescaled if necessary. All data are rescaled using the formula 

 

Vi = 
௔೔ି୫୧୬	ሺ௔	೔	ሻ

୫ୟ୶ሺ௔೔ሻି୫୧୬	ሺ௔	೔	ሻ
                                                              (3) 

 
Where Vi is the rescaled value, ai represents the original data, and min (ai) and max (ai) are the 

minimum and maximum values of the original data set. 

3.2.  Step 2 
In this step, the ACF and PACF of the rescaled data are plotted, as shown in Figure 3. The ACF and 
PACF are used to determine if an AR (p) or MA (q) model is appropriated and determine possible 
candidate models. 
 

 

Figure 2. ACF and PACF of monthly mean temperature during 1953-2014. 

3.3.  Step 3 
In this step, a SARIMA model is applied to forecast the temperature data. For the monthly mean 
temperature, observations one year apart in the time series xt might be modelled as 
 

∅ሺܤଵଶሻ∆ଵଶ
஽ ௧ݔ ൌ  ௧                                                         (4)ߙଵଶሻܤሺߠ
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Where׏ଵଶݔ௧ ൌ ሺ1 െ ௧ݔଵଶሻܤ ൌ ௧ݔ െ  ଵଶ of p andܤ ଵଶሻሻ are polynomials in theܤሺߠ ଵଶሻܤ௧ିଵଶ, and ∅ሺݔ
q, respectively. Both terms satisfy appropriate stationarity and invertibility conditions [8]. Generally, the 
error component ߙ௧ would be expected to be correlated with the time series. 

The method used in this study to search for the appropriate parameters of forecasting models is hyper 
parameter optimization. In this study, the ARIMA (p, d, q) (P, D, Q) m model requires six parameters: 
p, d, q, P, D and Q. The value of m is set as 12 because the data used are monthly data with a period of 
12. The AIC values of selected models are shown in Table 1. According to Table 1, SARIMA (1, 1, 1) 
× (1, 0, 1)12 shows the lowest AIC value. Thus, this model should be considered as the best forecasting 
model. 

 
Table 1. AIC values of SARIMA models. 

Parameters 
AIC Value 

p, d, q P, D, Q, m 
0, 0, 0 0, 0, 1, 12 471.85 
1, 1, 1 1, 0, 0, 12 -2280.76 
1, 1, 1 1, 0, 1, 12 -2754.63 
1, 4, 1 4, 1, 2, 12 -1183.66 
2, 1, 3 4, 2, 3, 12 -2446.92 

3.4.  Step 4 
The forecast accuracy of the selected model is validated by applying a diagnosis check. According to 
Table 1, the AIC value of SARIMA (1, 1, 1) × (1, 0, 1)12 is the lowest. 

 
Table 2. Results of the diagnostics test of the SARIMA (1, 1, 1) × (1, 0, 1,) 12 model. 

 Coef. Std err. z P> |z| [0.025 0.975] 
MA.L1 −0.8569 0.037 −23.186 0.000 −0.929 −0.784 
MA.L2 −0.1098 0.036 −3.061 0.002 −0.180 −0.039 

AR.S.L12 0.9990 0.000 3191.831 0.000 0.998 1.000 
MA.S.L12 −0.9743 0.023 −43.269 0.000 −1.018 −0.930 

 
Table 2 summarizes the results of the diagnostics test of the SARIMA (1, 1, 1) × (1, 0, 1) 12 model. 

The second column is the weight of the coefficients. The ‘Coef.’ column shows the weighting (i.e., 
importance) of each feature and how each one impacts the time series. Since all values of P> |z| are less 
than 0.05, the results are statistically significant. 
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Figure 3. Plots of residuals: (a) residuals over time; (b) frequency distribution histogram; (c) Q-Q 
plot; (d) autocorrelation. 

 
The residuals over time are shown in Figure 4a. The results imply the residuals show no obvious 

seasonality and appear to be white noise. Likewise, the autocorrelation shown in Figure 4d implies that 
the residuals of the original data have low correlation with the lagged data. 

According to Figure 4b, the Kernel Density Estimation (KDE) (red curve) is nearly overlapped with 
the N (0, 1) (green curve). The results imply that the residual follows a normal distribution, with mean 
equal to 0 and standard deviation equal to 1. In Figure 4c, the red line stands for a normally distributed 
dataset, with mean equal to 0 and standard deviation equal to 1, while the blue dots represent the 
residuals. The Q-Q plot of the residuals implies that the residuals follow a linear trend. Thus, the 
residuals are normally distributed. In general, the model shows good forecasting accuracy and can be 
used to predict future values. 

4.  Discussion and conclusions 
The selected model can now be used to make forecast time series. Due to the fundamental importance 
of forecast accuracy, a test should be performed to verify the forecasting accuracy, by comparing the 
forecast values with observational values. This test can also avoid under-fitting or over-fitting. The 
statistical tests of the forecast results are analysed in detail, as follows. 

The model predicts the next 36 months’ mean temperature at Nanjing station, based on the 35 years 
of past data. Data from January 1980 to December 2015 are used as the training set, while data from 
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January 2015 to December 2017 are used as the testing set. The MSEs of the predicted values from 2015 
to 2017 are 0.84, 0.89 and 0.94, respectively. The MSEs are relatively low, with an increasing trend of 
0.05 every year. Since the increasing trend is not obvious, the selected model shows good forecasting 
accuracy of the testing set and can be applied in future works. 

Figure 5 shows the training set and a comparison between the testing set and forecast values. 
According to Figure 5, the forecast values (red line) are close to the real values (blue line), and are within 
the confidence intervals (grey shading). The MSE of the forecast values is 0.89, which is relatively low. 
In general, the forecast results are acceptable. 

 

 

Figure 4. Comparison between the real values and forecast values. 
 
According to the above discussion, the selected SARIMA model can be used to forecast future values 

because its forecasting accuracy is acceptable. In future work, we intend to widen the range of parameter 
combinations when carrying out the grid search. This process might help us to identify models with 
higher forecasting accuracy. Furthermore, forecasting accuracy might be related not only to the 
parameters of the SARIMA model, but also to the length of the training set. Both assumptions should 
be studied in a follow-up study. 
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