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Abstract. The forecast model for catch data of E.sinensis was built by using 
continuous time Markov approach, combining with optimization method (0.618) 
based on of catch data of E.sinensis in Yangtze River estuary from 1970~2012. And a 
forecast on the catch data of E.sinensis in 2013 was made in this paper. The result 
showed that the forecast was corresponded to the catch data accurately and provides a 
new method for the prediction of crab resources. 

1.  Model Introduction 
The Continuous Time Markov Approach (CTM) is mainly used to describe the state change and 
interaction process between the system and the environment. It is particularly applicable to the 
dynamic analysis of the relationship between biology and environment [1]. The model is based on 
continuous-time Markov theory and time-sharing analysis techniques in mathematics, and draws on 
the concept of quantum transitions in atomic physics. It was proposed by P.J.H Sharpe and Wu Xinyi 
et al. in 1985 [2]. 

The types of CTM modeling are between the theoretical and empirical models, the modeling 
principles are clear, the modeling method is simple, the analysis of relevant parameters is flexible, and 
the data is inclusive (can be theoretical, empirical, or conceptual "precise" data and "inexact" data), the 
model contains the basic rules of the ecological system such as environmental comprehensive 
principle and limit factor principle, and can fully display and integrate the system control factors of 
different sources and different dimensions within the system. Therefore, it is particularly suitable for 
the study of complex systems controlled by multiple factors, such as applied to biological and 
ecological systems. 

2.  Mathematical principles 
Definition: Let the parameter set T of the Markov process {Xn, n∈T,} be a discrete time set, T={0, 1, 
2, ...}, the total {Xn} of all possible values of Xn is a discrete state space, denoted by E={x1, x2, ...}, if 
any positive integer n∈T and any x1, x2, ..., xn, xn+1∈E, have P(Xn+1=Xn+1 | X1=x1, X2=x2, ..., 
Xn=xn)=P(Xn+1=xn+1 | Xn =xn), then {Xn} is called Markov chain [3-5]. 
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In the Markov chain, Pij
(n)=p{Xn+1=j/Xn=i} is called the one-step transition probability of the 

Markov chain {Xn, n∈T,} at time n, where i, j∈E, the one-step transition probability can be 
represented by the matrix P. 
 

            
P =      

                   
 

From t to t+1, the ratio of the frequency nij of the state transition from Si to Sj to the total 
frequency n is the one-step transition probability of the transition of state Si to Sj. Pij≧0 and 
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P (i, j=1, 2, ...m). In general, the transition probability Pij(n) is related not only to the state i, j 

but also to the time n. When Pij(n) does not depend on time n, it means that the Markov chain has a 
smooth transition probability. If for any i, j∈E, the transition probability Pij(n) of the Markov chain 
{xn, n∈T} is independent of n, the Markov chain is said to be homogeneous [6]. 

Based on probability theory, the CTM model predicts the possible state of the system at a future 
moment (ti>t) according to the state of the system at the time t at the transition probability matrix P of 
each order. When applying this model for prediction, it is necessary to satisfy the following two 
assumptions on a certain space-time scale. First, the system must be stable during the study period, 
and its transition probability matrix remains unchanged from period to period; second, “no post-effect”, 
that is, the transition of the system state is only related to the previous state, but not to any other state 
[6]. 

3.  Modeling Methods 

3.1.  Historical data processing 
Historical data is processed using the method of optimization (0.616 method), and the state level is 
divided. 

The partitioning principle is: (1) All elements of the transition probability matrix of each order of 
the Markov chain are non-negative; (2) The sum of all the rows of the transition probability matrix of 
the Markov chain is about 1; (3) The probabilities of various states of the Markov chain are roughly 
similar. According to this principle, the final grading standard is determined. 

3.2.  Markov property test 
Before analyzing the actual problem with the Markov chain model, it must first test whether the 
random sequence has Markov property. The x2 statistic is usually used to test the Markov property of 
discrete sequences. 
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historical data sequence has m possible states. The fij is used to represent the frequency of the 
historical data sequence from state i to the state j in only one step. i, j∈E, where Pij is the transition 
probability of one step. If n is large enough, the statistic obeys the x2 distribution with a degree of 
freedom of (m-1)2, given the significance level a, the table can be scored at the point xa(m-1)2 if 
x2>xa(m-1)2. It can be determined that the sequence {Xn} is Markovian, but the sequence cannot be 
treated with Markov chain. 

 

P11 P12 ... P1m 
P21 P22 ... P2m 
... ...   
Pm1 Pm2 ... Pmm 
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3.3.  Establish transition probability matrix 
According to the state of the historical data sequence, the frequency matrix and each order transition 
probability matrix are listed. 

fij represents the frequency of transition from state i to step j, step 2, step... until step m to state j, i, j
∈E. In the transfer frequency matrix, divide the element fij of the jth column of its ith row by the sum 

of the rows and obtain the value, which is called transition probability Pij; Pij=




m

1j

ij

ij

f

f
 is the transition 

probability matrix of each order, indicating that the historical data sequence contains m states. 

3.4.  Computation of Markov Chain Weights 

rk is an autocorrelation coefficient of each order, k∈E, normalized to it, ie wk= 


m

k

kk rr
1

/ , wk is the 

Markov chain weight of each order delay, and m is the maximum order of calculation. 

4.  Construction of the CTM model of the crab in the Yangtze Estuary 
The CTM model provides an effective tool for quantitatively studying the resource dynamics of the 
E.sinensis, but its application requires long-term accumulation of resource monitoring data. In general, 
the total amount of fishing can indirectly reflect the resource density [7]. Due to data limitations, this 
paper uses the method of Zhan Bingyi [8] to replace the population with the amount of E.sinensis in 
the Yangtze River estuary to establish CTM. The model predicts the resource changes of E.sinensis in 
the Yangtze River estuary. 

4.1.  Sources of data 
Based on the monitoring data collected from the Yangtze River Estuary Crab Eel Crab Harvesting data 
from 1970 to 2012 (Table 1), the 2013 E.sinensis population catch data was used as an example of 
model test and prediction. 

 
Table 1. Catch data of E.sinensis in Yangtze River estuary from 1970~2012. 

Annual Catch Annual Catch Annual Catch Annual Catch Annual Catch
1970 1.9 1979 54.5 1988 6.5 1997 0.8 2006 6.0 
1971 19.2 1980 60.0 1989 6.5 1998 0.8 2007 16.0 
1972 32.6 1981 56.1 1990 8.0 1999 1.2 2008 14.0 
1973 21.1 1982 90.0 1991 25.5 2000 0.9 2009 14.0 
1974 20.0 1983 95.8 1992 10.0 2001 0.9 2010 25.0 
1975 45.0 1984 35.0 1993 15.0 2002 0.8 2011 26.0 
1976 114.1 1985 12.5 1994 12.3 2003 0.5 2012 26.0 
1977 47.3 1986 12.5 1995 11.0 2004 1.8 2013 25.7 
1978 29.0 1987 10.0 1996 5.5 2005 10.7 - - 

4.2.  Status Level Division 
According to Table 3-15, it can be concluded that the maximum catch of the migrating E.sinensis in 
the Yangtze River Estuary is 114.1t and the minimum catch is 0.5t. First make the first point according 
to the optimization method. 

The first point: 0+(114.1-0.5)×0.618=70.2 
The second point: 0.5+114.1-70.2=44.4 
The third point: 0.5+70.2-44.4=26.3 
The fourth point: 0.5+44.4-26.3=18.6 
The fifth point: 0.5+26.3-18.6=8.2 
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Then fold the first remaining line left: 
The first point: 70.2+(114.1-70.2)×0.618=97.3 
The second point: 70.2+(114.1-97.3)=87.0 
According to the above data, according to the Markov chain transition probability matrix data 

partition principle, the catch of E.sinensis is divided into six levels, which are: 8.2 is the first level, 8.2 
to 18.6 is the second level, 18.6 to 26.3 For grade 3, 26.3 to 44.4 are grade 4, 44.4 to 70.2 are grade 5, 
and 70.2 and above are grade 6. From 1970 to 2012, the ranking of E.sinensis in the Yangtze River 
estuary is shown in Table 2. 

 
Table 2. Statistics of state hierarchical division of catch data of E.sinensis in Yangtze River estuary 

from 1970~2012. 

Annual Grade Annual Grade Annual Grade Annual Grade Annual Grade
1970 1 1979 5 1988 1 1997 1 2006 1 
1971 3 1980 5 1989 1 1998 1 2007 2 
1972 4 1981 5 1990 1 1999 1 2008 2 
1973 3 1982 6 1991 3 2000 1 2009 2 
1974 3 1983 6 1992 2 2001 1 2010 3 
1975 5 1984 4 1993 2 2002 1 2011 3 
1976 6 1985 2 1994 2 2003 1 2012 3 
1977 5 1986 2 1995 2 2004 1   
1978 4 1987 2 1996 1 2005 2   

4.3.  Markov Chain Inspections 
From the measured data of the catch amount of E.sinensis in Table 3-18, the frequency transition 
matrix fij and the one-step transition probability matrix P(1) are calculated to obtain the frequency 
transition matrix of the E.sinensis: 
 

 
Fij = 
 
 

                  
 

Combining one step transition probability matrix P(1) 
            

                       
                     

Pij = 
 
 
                     

The statistic X2 of the catch of the E.sinensis was calculated to be 69.937, with a given significance 

level a=0.05. Table lookup available 2
ax (25)=37.65, due to X2> 2

ax [(m-1)2], Therefore, the catch data 

of E.sinensis meet the Markov nature and can be treated as a Markov chain. 

4.4.  Weights of markov chains of various orders 
The measured data from Table 3-18 were used to calculate the catch of the E.sinensis in the Yangtze 
River Estuary. 

10 2 0 0 0 
3 7 0 0 0 
0  1 1 1 0 
0 1 0 1 0 
0 0 1 2 2 
0 0 1 1 1 

0.714 0.143 0.143  0 0 0 
0.273 0.636 0.091 0 0 0 
0  0.167 0.5 0.167 0.167 0 
0 0.333 0.333 0 0.333 0 
0 0 0 0.2 0.4 0.2 
0 0 0 0.333 0.333 0.333 
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The average value from 1970 to 2012 was x=23.309. The autocorrelation coefficients of E.sinensis 
were calculated based on the measured data from 1970 to 2012 and the average value. The weights 
were calculated from the autocorrelation coefficients. The results are shown in Table 3. 

 
Table 3. Each orders auto correlation coefficient and the weigh of Markov chain of each steps of 

E.sinensis. 

Project 
Time delay (year) 

1 2 3 4 5 6 
Autocorrelation coefficient rk 0.6931 0.4404 0.4386 0.3890 0.2416 0.2372 

Weight wk 0.2841 0.1805 0.1798 0.1594 0.0990 0.0972 

5.  Model Calculation and Prediction 
According to the catch data of Chinese mitten crab from 1970 to 2012 (excluding the 2013 data, the 
model was left as a test), the transition probability matrix of E.sinensis was calculated as: 

 
 
P1 = 
 

 
  
 
 
 

P2 = 
 
 
 
 

 
                  

P3 =                  
                     
                     

                     
                 
                 
P4 =                 

                     
                    
  
 
 

P5 = 
 
 
 
 
 
 
 

0.714 0.143 0.143  0 0 0 
0.273 0.636 0.091 0 0 0 
0  0.167 0.5 0.167 0.167 0 
0 0.333 0.333 0 0.333 0 
0 0 0 0.2 0.4 0.2 
0 0 0 0.333 0.333 0.333 

0.549 0.217 0.187  0.024 0.024 0 
0.369 0.459 0.142 0015 0.015 0 
0.046 0.245 0.321 0.117 0.206 0.067 
0.091 0.267 0.197 0.122 0.189 0.133 
0 0.067 0.067 0.213 0.360 0.293 
0 0.111 0.111 0.177 0.355 0.244 

0.451 0.256 0.199 0.036 0.049 0.010 
0.388 0.373 0.171 0.027 0.035 0.006 
0.100 0.255 0.228 0.117 0.197 0.105 
0.138 0.257 0.176 0.115 0.193 0.120 
0.018 0.124 0.110 0.181 0.324 0.242 
0.030 0.148 0.125 0.171 0.301 0.223 

0.392 0.272 0.199 0.046 0.068 0.023 
0.379 0.330 0.184 0.038 0.053 0.016 
0.141 0.254 0.190 0.112 0.191 0.114 
0.169 0.251 0.170 0.108 0.185 0.117 
0.047 0.160 0.129 0.164 0.289 0.210 
0.062 0.176 0.137 0.155 0.272 0.195 

0.354 0.278 0.196 0.054 0.083 0.035 
0.361 0.308 0.189 0.047 0.070 0.027 
0.170 0.251 0.176 0.108 0.183 0.114 
0.189 0.248 0.168 0.104 0.177 0.113 
0.077 0.185 0.140 0.149 0.261 0.185 
0.092 0.196 0.145 0.142 0.248 0.174 
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P6 = 
       
        

 
The advantage of the CTM model is that it can be considered as a black box model without 

considering the various changes in the population state, simplifying the complicated and difficult to 
describe population changes into states, thereby facilitating the simplification of complex ecological 
problems. In order to intuitively reflect the resource change trends of the E.sinensis in the Yangtze 
River Estuary, a map of the state transition probability of catches of the E.sinensis in the Yangtze 
River Estuary was drawn (Figure 1). 

 

 

Figure 1. Statistics figure of state hierarchical division of catch data of E.sinensis in Yangtze River 
estuary. 

 
According to the rank of transition probability matrix, the weight values of each state, and the state 

of the initial year, the catch status of the E.sinensis was predicted in 2013. The results are shown in 
Table 3. It can be seen from the table that in the column of E.sinensis catch status, the probability of 
the state “3” is maximally 0.307 after the weighted sum of the forecasted probabilities of the same 
state, therefore, in 2013, the catch level of E.sinensis was “3”, and the estimated catch range was 18.6t 
to 26.3t, which was in line with the measured data of 25.7t. The measured value is within the predicted 
value range, which proves that the established CTM model of the Yangtze River Estuary has higher 
sensitivity. 

 
 
 
 
 

0.329 0.278 0.192 0.061 0.096 1.052 
0.342 0.294 0.190 0.054 0.084 0.084 
0.190 0.249 0.171 0.104 0.177 0.177 
0.202 0.247 0.168 0.101 0.171 0.171 
0.106 0.202 0.148 0.137 0.239 0.239 
0.119 0.209 0.151 0.132 0.229 0.229 
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Table 4. Predicted statistics of catch data of E.sinensis in Yangtze River estuary in 2013. 

Initial 
year 

Status 
Time delay 

(year) 
State 

weight 
1 3 4 5 6 

Probability 
source 

2012 3 1 0.2841 0 0.5 0.167 0.167 0 P1 
2011 3 2 0.1805 0.046 0.321 0.117 0.206 0.067 P2 
2010 3 3 0.1798 0.100 0.228 0.117 0.197 0.105 P3 
2009 2 4 0.1594 0.379 0.184 0.038 0.053 0.016 P4 
2008 2 5 0.0990 0.361 0.189 0.047 0.070 0.027 P5 
2007 2 6 0.0972 0.342 0.190 0.054 0.084 0.084 P6 

Weighted value 0.156 0.307 0.106 0.144 0.044  

6.  Discussion and Outlook 

6.1.  Application of CTM Model 
The CTM prediction method can be divided into three prediction methods based on the absolute 
distribution of Markov chain, superimposed Markov chain and weighted Markov chain. It is generally 
believed that the application of weighted Markov chain prediction method can fully and reasonably 
use information [9], so this paper selects the weighted Markov chain prediction method for modeling 
and analysis, predicted and verified the status of crabs in 2013, the results are more accurate. This 
shows that the CTM model does not require high data, as long as there are many years of continuous 
resource monitoring data, and the data is in line with the requirements of the Markov chain prediction 
model, it can be modeled and forecasted, without considering other factors that affect the population. 
The CTM model has simple calculation, accurate prediction and strong reliability, and provides a new 
method for predicting the quantity of E.sinensis. 

6.2.   Improvements in the CTM Model 
Considering the characteristics of the river-sea migratory resources of E.sinensis, their resources are 
greatly affected by natural and human factors. Over 40 years of actual measurement of the resources 
of the E.sinensis in the Yangtze River Estuary have also shown that the population changes drastically. 
Therefore, although the CTM model is used to analyze the population trend for the recent trend and 
the credibility of the forecast results is high, according to the modeling principle of the model, once 
the natural or human factors change, the steady state of the system will change accordingly. For 
specific improvement, we can consider the introduction of control factors that lead to changes in the 
resources of the E.sinensis, within the range of values (0-1), by investigating or studying the 
corresponding values to construct a new state transition probability matrix, so that the model 
parameters and the structure is more in line with resource conditions to improve the accuracy of the 
CTM model [9-11]. 

Acknowledgments 
This work was financially supported by the Special Scientific Research Funds for Central Non-profit 
Institutes, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences fund  
(2016M05) and the earmarked fund for Jiangxi Agriculture Research System (JXARS-10). 

References 
[1] Jr R L O, Sharpe P J H, Wu H I. Whole-plant modelling: A continuous-time Markov (CTM) 

approach [J]. Ecological Modelling, 1985, 29(1):171~187. 
[2] Sharpe P J H, Rykiel E J J, Olson R L, et al. A continuous time markov (CTM) model of plant 

growth [J]. 1987. 
[3] Stenseth N C. Evolutionary Aspects of Demographic Cycles: The Relevance of Some Models of 

Cycles for Microtine Fluctuations [J]. Oikos, 1977, 29(3):525~538. 



8

1234567890‘’“”

ACMME 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 394 (2018) 052006 doi:10.1088/1757-899X/394/5/052006

 
 
 
 
 
 

[4] Stenseth N C, Hansson L, Myllymäki A, et al. General Models for the Population Dynamics of 
the Field Vole Microtus agrestis in Central Scandinavia [J]. Oikos, 1977, 29(3):616~642. 

[5] Stenseth N C. Modelling the Population Dynamics of Voles: Models as Research Tools [J]. 
Oikos, 1977, 29(3):449~456. 

[6]  Stenseth N C, Hansson L, Myllymaki A. Population Dynamics of the Field Vole (Microtus 
agrestis [L]): a Model [J]. Eppo Bulletin, 1977, 7(2):371~384. 

[7] W G SHI, M Y ZHANG, K LIU, et al. Stress of hydraulic engineering on fisheries in the lower 
reaches of the Yangtze River and compensation [J].2009, 21(1):10-20 (in Chinese). 

[8] B Y Zhan, Y M Chen, X J Dai, et al. The alteration and rational utilization of megalopa 
resources of Eriocheir sinenses population in Changjiang River Estuary [J]. Journal of 
Shanchai Fisheries University, 1999, (4):322~328. 

[9] Yin G G, Zhang Q. Continuous-Time Markov Chains and Applications [J]. Technometrics, 
2013, 43(2):240. 

[10] Mangel M. Continuous-Time Markov Chains: An Applications-Oriented Approach. by William 
J. Anderson [J]. Journal of the American Statistical Association, 1991, 88(422):901~904. 

[11] Gaitsgory V. Continuous-time Markov chains and applications: a two-time-scale approach. 
Second edition [book review of MR2985157]. [J]. Siam Review, 2013, (4):799~801. 

 


