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Abstract. This paper presents an analysis of the load distribution in the trochoid pump with the 
planetary movement of the impeller. There are a lot of theoretical and numerical analyses 
conducted for the gerotor of the pump with fixed positions of the gear axis. Design of planetary 
gerotor pump has a different load distribution than gerotor with fixed axes. A planetary gerotor 
consists of a fixed outer gerotor gear with internal gearing and inner gear with an external 
gearing. The centre axis of the inner gear has a circular motion around the central axis of the 
fixed gear, because of the eccentricity on drive shaft. The special shape of the gerotor teeth 
forms chambers with varying volume that allows the flow and pressure of the fluid. During the 
pump working process the forces of different direction and intensity are present in each of the 
working chambers. It is necessary to determine the pressure in each of the chambers in order to 
obtain the load model of the gerotor. Load model will enable the calculation of load 
distribution in the zone of the maximum contact stresses. This calculation should help in 
dimensioning of the pump and the achievement of better performance characteristics. 

1. Introduction 
The principle of trochoidal gears meshing is equivalent to the principle of the classical planetary 
mechanism with parallel axes, with most of the design solutions applying epicyclic motion, which 
enable gain of high transmission ratios and compact design [1]. For pumps with internal trochoidal 
gearing, the profile of one gear is defined by trochoid (curve from the cycloid family), while the 
meshed profile is an appropriate inner or outer envelope. Because of the specific geometry, the entire 
profile can be applied for meshing. Equidistant modification provides a profile with better functional 
characteristics. These advantages are used in the design of the gerotor pumps. 

Gerotor pumps have wide application in various hydraulic systems, including vehicles [2] and flow 
meters [3], because they have numerous advantages such as: compact design, small pulsations 
(therefore lower noise), precise and stable operation at high speeds. Although they have simple design, 
they are complex from the kinematics aspect and require additional study, particularly a gerotor pump 
with planetary movement of the gears. In the last few decades, a large number of papers have been 
published covering all the main aspects in the research field of the gerotor pumps. The most important 
investigations of the hydraulic pump parameters are given in [2], [4], [5], the model of computer 
dynamics of the fluid could be found in [6], and profile of the gears in [7]. Research of the gap 
calculation between the teeth profiles is presented in [8]. Significant publications that relate the stress 
in the teeth contact of the trochoidal meshing are [9-11]. The problems of friction in cycloidal gearing 
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were investigated in [12], [13]. The precise calculation of the cycloid rotary pump flow and the flow 
rate irregularity is described in detail in [14]. 

Requirements in terms of pumps performance are increasingly stringent in modern industrial 
applications. In addition, the environmental protection standards prescribe the development of 
hydraulic systems without any noise and without leakage of the fluid. Taking into account the quality 
of the gerotor pumps and the challenges they face in modern applications, as well as the requirements 
of the standards, the authors have developed a new concept of the gerotor pump whose prototype has 
been presented in the paper [15]. New topics related to gerotor pumps and trochoid gearing are, 
generally, numerical approaches supported by experimental investigation [16], [17]. 

This paper investigates the forces and moments that act on the gear pair of gerotor pumps with 
planetary movement of the inner gear. In that case, the inner gear is mounted on the drive shaft, while 
the outer gear is fixed. The main objective of this analysis is to set up a force model, which would 
further enable the definition of conditions for reducing contact forces. The reduction of contact forces 
would reduce the wear. The problem of determining the contact forces is complex since the load is 
transmitted simultaneously at several points of contact. In addition, the pressure forces of the fluid that 
act on the tooth side of the gears are considered, which depend on a large number of influencing 
parameters. For these reasons, a simple physical model and an appropriate analytical method were 
applied. 

2. Load analysis of the trochoid pumps with planetary movement of working elements 
For the analytical determination of the fluid pressure force, Hall's method is presented, which is 
described in the reference [18]. It is necessary to emphasize that the basic aim of the research in this 
chapter is to define the load distribution, so certain approximations can be accepted in the force 
calculation. 

During the pump working process, the forces of different intensity and direction are acting in each 
of the working chambers, as a result of the pressure of the fluid. Modelling of the gear pair loads 
requires the intensity of the pressure in each chamber at an arbitrary point. For the force calculation of 
the fluid pressure in the pump operating chambers, a model shown schematically in Figure 1 is being 
considered. In addition, the following assumptions are introduced: 

� the working fluid is incompressible, 
� there is no friction between fluids and surfaces of working elements, 
� there is a change in pressure in each chamber as a result of changing the current volume of the 

chamber, 
� each opening of the valve is modelled as a damper with the same discharge coefficient Cp. 

Compressive forces in each of the chambers, as well as their resultant, will be defined via their 
projections onto the axis of a stationary coordinate system of the envelope. The position of the inner 
gear at the arbitrary time is determined by the position of the reference line with the use of angleψ. 

When the gears are rotating, the intensity and direction of the force change is related to the change 
in pressure in the working chambers. Starting from the above assumptions, a general pattern for 
determining the flow in the chamber Ki can be written [18]: 
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where: ip∆ is the pressure drop due to the flow of liquid, A0 is the cross-sectional area of the opening of 

the distribution valve and ρf is the fluid density. 
During the suction phase, the volume of the chamber increases and the current geometric flow is 

positive. Therefore, the following expression for determining the geometric flow for the chamber Ki in 
the suction phase can be written:  
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During the discharge phase, the volume of the chamber decreases and the current geometric flow is 
negative. Therefore, the following expression can be written for determining the geometric flow for 
the chamber Ki in the discharge phase: 
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Based on equation (2), the expression for determining the pressure for the chamber Ki in the suction 
phase can be written: 
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i.e., according to equation (3), in the discharge phase: 
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The pressure force in the chamber is a continuous force that can be represented by an equivalent 

concentrated pressure force,piF , which attack line coincides with the symmetry line of the path 1+iiPP  

connecting the two adjacent points of contact for the observed chamber, as shown in Figure 1. The 
equivalent pressure force in a chamber can be expressed in vector form as: 
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Vector 1+iiPP that connects the two consecutive points of contact can be expressed as the difference of 
the position vector of those points in the coordinate system of the envelope Oaxayaza: 
 

 

Figure 1. The pressure forces of the fluid acting on the 
inner gear in an arbitrary position. 
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When equation (7) is included in equation (6), the following is obtained: 
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The vector position of contact point Pi  in the coordinate system of the envelope, can be written in 
the form of the following matrix expression [19]: 
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where: 

 

( )

( )





 −−−






 −−

=
ψπλ

ψπ

δ

z

i
z

i

i 12
cos

12
sin

arctan  (10) 

Angle τi between the symmetry line of the teeth of the external gear and the coordinate axis xa can 
be expressed as [19]: 
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while, for the adjacent profile, this angle can be calculated using the following expression: 
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Starting from equation (9), and taking into account equations (10), (11) and (12) and applying the 
corresponding transformations, a final equation is obtained for the pressure force of the fluid in the 
chamber Ki: 
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The resultant of all pressure forces acting on the inner gear is obtained as their vector sum: 

 ∑
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with its acting point coinciding with the pitch point C. 
The torque M acts on the inner gear and it is equal to the sum of the equivalent pressure forces in 

the chambers: 
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According to the adopted convention, force moments are calculated in relation to the instantaneous 
pitch point C. Therefore, the moment of force equivalent to the pressure in the chamber Ki can be 
expressed as the following vector product:  
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where Si is the middle vector point 1+iiPP  (Figure 1). Based on the geometric relationships in Figure 1, 
the following vector relationships can be written: 
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If equation (19) is replaced by the equation (6), the equivalent pressure force can be expressed as: 
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Substituting equations (21) and (22) in equation (16), the moment of force equivalent to the pressure 
in the chamber Ki can be expressed in the form of the following relation: 
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which can be presented in a simpler form as: 
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Based on the equation (24) and using the trigonometric transformation, the final expression for 
determining the intensity of the moment of pressure force in the chamber Ki can be written: 
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Starting from the law of conservation of energy in the system, a connection can be established 
between the drive torque, M1, and the resulting torque of equivalent pressure forces relative to the 
pitch point, M. For the considered configuration of the pump, it has the following form: 

 MM −=1  (26) 

Based on the analysis, it can be concluded that, in the pumps with planetary motion of working 
elements, the overall momentum of fluid pressure is balanced by drive torque. Unlike the pump model 
with fixed axes shafts, where equations of equilibrium contain support reaction force [19], in the 
observed model with planetary motions, fluid pressure force is balanced by the resultant of the contact 
forces. From this condition and the equations of balance of forces acting on the gears, it is possible to 
determine the distribution and size of the contact force. 

3. Results 
In this part of the paper, the application of the developed mathematical model for the trochoidal 
gearing loads calculation for the particular case of gear pair will be presented. Parameters required for 
calculation are as follows: z = 6, e = 3.56 mm, b = 16.46 mm, λ=1.375, rc = 9.79 mm (c = 2.75), 
Cp=0.63,  A0=178 mm2, ∆p = 0.6 MPa, ρf = 900 kg/m3, n1= 1500 rpm and ω1=50π s-1. The results were 
obtained by testing the computer programs based on mathematical model for the adopted parameters 
of the gear pump, and graphically presented in the following figures. Figure 2 shows the fluid pressure 
force diagram, and Figure 3 shows the resulting torque of fluid pressure force, depending on the drive 
angle ψ. Figure 4 shows the current pressure forces in the individual chambers of the pump, on the 
basis of which their size and the course of their changes can be perceived. The results are presented as 
a function of drive angle ψ, for a period corresponding to the phase difference between the two 
adjacent chambers, i.e. 2 /s zψ π= , as well as for the period of a revolution of the drive shaft (Figure 5). 
 

 

 

 

Figure 2. The resulting force of the fluid 
pressure force. 

 Figure 3. The resulting torque of fluid 
pressure force. 
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Figure 4. Change in the force of fluid pressure in the pump chamber 
for one phase ψ=2π/z. 

 

Figure 5. The fluid pressure forces in the pump chambers for the full 
rotation of the drive shaft.  

4. Conclusions 
One of the basic problems in the design of internal trochoidal gearing is the impossibility of wear 
compensation, which occurs as a result of large contact stresses in certain phases of meshing. Related 
to this assertion, one of the objectives of the paper was to define the initial conditions that would 
further mitigate the reduction of maximum contact stresses by changing the geometrical parameters of 
the teeth profiles. This had required a detailed analysis of the forces and moments that act on the 
toothed pair of the trochoid rotary pumps. The obtained results of this research can be used to analyse 
the load distribution at the simultaneously meshed tooth pairs and its impact on the strength of the 
teeth side. Such an analysis would be carried out by the finite elements method (FEM) in some of the 
PLM software. In carrying out such analyses, the gearing parameters, given in Chapter 3 can be 
varied, in order to obtain the optimum geometry of the gearing, which would reduce the contact 
stresses. These possibilities will be the subject of future research. 
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