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Abstract. The dynamics of HIV infection model with immune response and cure rate is 
investigated. The explicit expression for the basic reproduction number of the model which 
determines where the virus dies out or not is obtained. With characteristic equation and 
Hurwitz criterion, the local stability of the equilibriums is analyzed.  

1. Introduction 
The human immuno-deficiency virus (HIV) infection, which can cause acquired immuno-deficiency 
syndrome(AIDS), has become an important infectious disease in both the developed and the 
developing nations. It causes mortality of millions of people and expenditure of a huge amount of 
money in disease control and health care. In recent years, some scholars have achieved many 
significant results by establishing the mathematical model of HIV pathogenesis which is used to study 
the HIV virus concentration and the change of CD4+T cells concentration in the body [1-7]. The 
research [8]  shows that, for a chemotherapy of HBV infection, under the effect of drugs, the infection 
of target cells can overflow from the nucleus into uninfected state covalently closed circular DNA 
(cccDNA). Zhou et al. [6], consider a HIV pathological model with the cure rate, and the results show 
that it will be able to effectively extend the duration of HIV infection if the cure rate is improved in a 
certain extent. The immune response following viral infection is universal and necessary in controlling 
or even eliminating the disease [9]. Under the inspiration of these references, we will consider a HIV 
infection model with immune response and cure rate in this paper as follows: 
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Here ( )x t is the concentration of uninfected cells at time t ; ( )y t  is the concentration of infected cells 

that produce virus at time t ; ( )z t  is the concentration of antigen-specific CTLs  at time t .   is the 

growth rate of new healthy cells. a  and d  are  the death rate of infected cells and uninfected cells, 
respectively .    is the rate constant characterizing infection of the cells.  p is the death rate of 

infected cells due to the immune system.   is the rate at which infected cells return to healthy cells 

after treatment. The immune response is supposed to decay exponentially at a rate bz  and get stronger 
at a rate cyz .  All parameters in the model are positive. 

Model (1) needs to be analyzed with the following initial conditions: 
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                                                       0 0x  ,  0 0y  ,  0 0z  .                                                          (2) 

It can be proved that the solution of system (1) - (2) exists and is positive. 

2. Equilibrium States  
By solving the equations (3), we can obtain the three types of nonnegative equilibrium of model (1). 
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Model (1) always has an infection-free equilibrium, where 0 0( ,0,0) ,0,0E x
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0R  and 1R  are defined as the basic reproductive number and the immune reproduction number of 

model (1), respectively. 
When 0 1R  , Model (1) has an unique immune-absence equilibrium 1E besides 0E , where 
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When 1 1R  ,  Model (1) has an unique interior immune-presence equilibrium *E  besides 0E   

and 1E ,  where     0* * * * 1
, , , ,
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3. Local Stability 
Next, with characteristic equation and Hurwitz criterion, we analyze the local stability of model (1). 

Theorem 1 Consider model (1) 
(i) If 0 1R  , the infection-free equilibrium 0E  is locally asymptotically stable; 

(ii) If 0 1R   and 1 1R  , the immune-absence equilibrium 1E  is locally asymptotically stable; 

(iii) If 1 1R   and 0b c   , the immune-present equilibrium *E  is locally asymptotically stable. 

Proof. (i) The Jacobian matrix of model (1) at 0E  is obtained as follows: 
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The characteristic equation of  0J E takes the form： 
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By solving the third order determinant, equation (4) can be simplified as follows: 

   0 0.r d r b r a x                                                              (5) 

The equation (5) has three roots:   1 2 3 0, , 1r d r b r a R       . When 0 1R  , that is 3 0r  , 

equation (5) has three negative real roots, hence 0E  is locally asymptotically stable. When 0 1R  , that 
is  3 0r  , equation (5) has a positive real root, thus 0E  is unstable.  
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(ii) The Jacobian matrix of model (1) at 1E  is obtained as follows: 
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The characteristic equation of  1J E takes the form: 
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By solving the third order determinant, equation (6) can be simplified as follows: 
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The equation (7) a characteristic root:  1 1 1 1r cy b b R    . When 1 1R  , that is 1 0r  . The rest 

of the characteristic roots satisfy the equation (8): 
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Because 1
a

x
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 , the equation (8) is simplified as follows: 
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All coefficients of quadratic equation (9) are positive, and hence its roots have negative real parts. 
That is 1 1R   ensures that all eigenvalues have negative real parts of equation (7) and hence the 
immune-absence equilibrium 1E  is locally asymptotically stable if 0 1R  and 1 1R  .  

(iii) The Jacobian matrix of model (1) at *E  is obtained as follows: 
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The characteristic equation of  *J E takes the form: 
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By solving the third order determinant, the equation (10) can be simplified as follows: 
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When b c   is greater than zero, it ensures that 2 1 0a a a  is greater than zero. By the Routh-
Hurwitz theorem, all roots of the equation (11) have negative real part, and the immune-present 
equilibrium *E  is locally asymptotically stable if 1 1R   and 0b c   . 

4. Conclusion 
In this paper, the dynamics of HIV infection model with immune response and cure rate is investigated. 
The explicit expression for the basic reproduction number of the model which determines where the 
virus dies out or not is obtained. The sufficient condition of local asymptotic stability of equilibrium is 
obtained by using the characteristic equation and Hurwitz criterion. The infection-free equilibrium 0E  
of model (1) is locally asymptotically stable when 0 1R  ; the immune-absence equilibrium 1E  of 

model (1) is locally asymptotically stable when 0 1R  and 1 1R  ; the immune-present equilibrium *E  
of model (1) is locally asymptotically stable when 1 1R   and 0b c   . 

The concentration of CD4+T cell is an important indicator of HIV infection progression. Because 
*x  is a monotone increasing function of cure rate  . Therefore, increasing the cure rate   will  

further improve the concentration of CD4+T cells in the equilibrium point of the disease, thereby 
prolonging the duration of HIV infection and thus effectively controlling the effect of HIV infection. 

In this paper, the immune reproduction number 1R   is the monotone decreasing function of cure 
rate  , which means the increase of cure rate reduces the production of immune cells in the body. 
The mechanism is: the cure rate is to vaccinate measures can be considered in this study. Because 
vaccination is to replace the function of immune cells, the infection to the stimulation of immune 
becomes smaller. Thus, vaccination can reduce the generation of immune cells in the body. 
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