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Abstract. Hyperspectral remote sensing technology has made remarkable progress and shows a
huge application prospect, such as in mineral distribution detection. Hyperspectral unmixing is
a key step in applying hyperspectral remote sensing to detect surface minerals, which extracts
endmember spectrum of minerals and detects mineral distribution. Non-negative matrix
factorization (NMF) has been introduced into hyperspectral unmixing in the last decade. To
reduce the influence of the non-convexity of NMF on spectral unmixing accuracy, the paper
proposes a novel hyperspectral unmixing model. The proposed method uses the kernel density
function to estimate the intrinsic data structure of hyperspectral images and uses regularization
to establish the relation between high-dimensional hyperspectral image and low-dimensional
abundance matrix. The proposed method makes the decomposed abundance matrix preserve the
hyperspectral data structure, which leads to a more desired spectral unmixing performance. The
experimental results on real hyperspectral image prove the superiority of the proposed method
in surface mineral detection compared with other typical spectral unmixing methods.

1. Introduction

Hyperspectral remote sensing technology has made remarkable progress. Because of high spectral
resolution of the hyperspectral imagery, it can be used as a reference for identifying ground object.
Hyperspectral remote sensing technology shows a huge application prospect, such as in mineral
distribution detection [1]. Hyperspectral unmixing is a key step in applying hyperspectral remote sensing
to detect surface minerals, which extracts endmember spectrum of minerals and detects mineral
distribution.

The extraction of endmembers is a key step in spectral unmixing [2]. Many scholars have proposed
corresponding methods for endmember extraction, such as N-FINDER [3], VCA [4], SGA [5]. In
addition, there are methods that can generate endmember and abundance matrices at the same time, such
as non-negative matrix factorization (NMF) [6] and MVES [7]. In the above methods, because NMF
can generate endmember matrix and abundance matrix at the same time and is suitable for the extraction
of non-pure pixels. However, NMF simply performs mathematical operations and lacks clear
geographical significance [8]. To apply NMF to spectral unmixing, many scholars add different
constraints to the standard NMF objective function, making the mathematical model more in line with
geographical significance and achieving a certain spectral unmixing effect [9-10]. MVC-NMF [9]
regards the minimum monomorphic volume formed by the endmember spectrum as a constraint. L1/2-
NMF [10] with sparseness constraints is proposed to obtain the best sparse solution.

The above-mentioned NMF algorithms don’t explore the global information of hyperspectral image,
(i.e., the relation between pixels of the hyperspectral image). The relation between hyperspectral pixels
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is referred to data structure of hyperspectral image. The data structure of hyperspectral image can be
established using kernel density function. This paper proposes NMF model with new constraint
conditions. The new method can preserve the data structure of hyperspectral images to the abundance
matrix in low-dimensional space. Because the abundance matrix of the low-dimensional space preserves
data structure of the hyperspectral image, the accuracy of the endmember spectral information obtained
by the proposed algorithm in the paper is improved.

2.The Proposed Method

The relation between the spectrum of each pixel of the hyperspectral image and other pixels of the same
image is called the data structure of hyperspectral image. The data structure of the hyperspectral image
can be established by kernel density function. The kernel density function used here is as formula (1).

(4= 1)
N
Kg(xi,xj)= Y
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X; , x;are the i-th and j-th column vectors of the original hyperspectral data X. The data structure of
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the hyperspectral image is equivalent to the matrix P in formula (2).
Ko (x,x) .. K (x.x,)
P= : - : )
Ko (xpx) - Ko (%)
The formula (3) is used to establish the relation between abundance matrix A and hyperspectral

image.
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Where, a; , a ; are the column vectors of the abundance matrix A.
We learn from formula (1) that the more similar x; and x; are, the bigger K, (xl.,xj ) is. It is obvious
that the more similar x; and x; are, the more similar the abundance a; of the given pixel Xx; is to the
abundance g of the given pixel x;. Different weight coefficients K, (x,.,xj.) are set according to the

difference values between different pixels. The formula (3) is a regularization term that makes the
abundance matrix A preserve the data structure of hyperspectral image. We add the formula (3) to the
NMF objective function and can get non-negative matrix factorization with data structure invariant
constraints algorithm model in Equation (4).

min{|X — E4} + 73,3 K, ()], a ] o)

In the paper, we abbreviate the non-negative matrix factorization with data structure invariant
constraints algorithm model as NMF-DSI.

The NMF-DSI model uses an iterative algorithm to calculate the optimal solution for E and A. The
objective function's gradient calculations for E and A are as follows:

V. f(E,A)=2EAA" —2X4" (5)
V f(E,A)=2E"EA+y*W.* A)=2(E" X + y* AP) (6)
(.)T represents the transpose matrix of the matrix. W(:,i) in formula (6) is equivalent to
j’:l KU (xi’x./) '
Using the above gradient formulas (5) and (6), we develop the following multiplicative rules.

E < E.*(XA)./ (EAAT) (7)
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A= A*X(E" X +y* AP)./ (E"EA+ y*W.* A) ®)
Where, .*and ./ represent the multiplication of elements and the division of elements within the
matrix, respectively.
In the NMF-DSI algorithm model, we use the VCA algorithm or other endmember extraction
algorithm to set the initial value of endmember matrix E. The initial value of the abundance matrix A
can be calculated using the least squares method, as follows:

A=max((E"E)"'E" X),0) C)
The NMF-DSI algorithm model sets two stop criteria in the iterative optimization process. One of

the stop criteria is the maximum number of iterations , another stop criteria is that a threshold t should
be specified for the formula (10).

I<«n 1
X EAl < (10)

3. Experimental Results and Analysis
The paper uses real hyperspectral images to verify and analyze the algorithm model. The experiment is
to verify the effectiveness of the proposed NMF-DSI algorithm.

Spectral angle distance (SAD) is used to measure spectral unmixing accuracy and is defined in the
formula (11). If the calculated SAD value is smaller, then the closer the extracted spectral endmember
accuracy is to the true spectral value.

E'E
SAD, =arccos(;—m—) (11)
£ I£]

The parameters of the NMF-DSI algorithm model are as follows : (1) the maximum number of
iterations is set to 1000 in real hyperspectral data experiments; (2) regularization parameter y in NMF-

DSI algorithm model is experimentally selected from the interval [0.00Sn/ m’ O.In/ m’] for real

hyperspectral data experiments; (3) threshold T should be specified as 0.001.

To evaluate the actual performance of the NMF-DSI algorithm model, this section will analyze the
map of the Cuprite mineral area in the western part of Nevada, USA. This image has been obtained by
an AVIRIS sensor. Cuprite data is available on the internet. The real spectral library of ground objects
in this area is complete and is recorded in the “USGS Spectral Database” [11]. The experiment uses the
"USGS spectral database" as a reference standard and uses SAD to measure the accuracy of the extracted
endmember spectrum.226 x 176 sub-images have been taken from the raw data for experimentation.
Figure 1 shows the 50th band of this image. In experiments, the low SNR band and the water vapor
absorption band (1-6, 104-113, 148-167, and 219-224) have been removed. Using the VD method[12]
with false alarm probability Pr= 0.00001 to estimate the number of endmembers in the selected region
is equal to 10 .The endmember spectra extracted by the NMF-DSI algorithm and other algorithms are
compared with the USGS library, and spectral similarities are quantified using the SAD standard. As
can be seen from Table I, the NMF-DSI algorithm has the largest number of endmember spectral
minimum SAD values, and the NMF-DSI algorithm has the smallest endmember spectral SAD mean
value.
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Figure 1. The AVIRIS Cuprite image (band 50).

Figure 2 is a comparison of the endmember spectrum of the NMF-DSI algorithm with the mineral
curve of the USGS library. Figure 3 is mineral abundance distribution maps for NMF-DSI, L1/2-NMF,
MVC-NMF, and MVES. The color of the distribution map corresponds to the value 0-1. The closer the
color is to the blue, the closer the abundance value is to 0. This indicates that there is no such mineral
distribution in the area. The closer the color is to the yellow, the closer the abundance value is to 1,
indicating that more minerals are distributed in the area. From the mineral distribution map, it can be
seen that the mineral distribution map of MVES can hardly find the existence of minerals, and NMF-
DSI and L1/2-NMF can obviously find the corresponding mineral distribution. However, the
endmember spectral similarity accuracy of L1/2-NMF is worse than that of NMF-DSI. L1/2-NMF only
considers the sparsity of abundance. Combined with the mineral abundance maps in Figure 3 and Table
I, it can be seen that the NMF-DSI algorithm is superior to other algorithms (L1/2-NMF, MVC-NMF
and MVES).

TABLE 1 SAD RESULTS ON THE AVIRIS CUPRITE DATA

NMF-DSI L1/2-NMF MVC-NMF MVES

Montmorillonite 0.1043 0.1095 0.2231 0.1602
Nontronite#1 0.0841 0.0807 0.1120 0.1444
Sphene 0.0707 0.0741 0.1164 0.2638
Nontronite#2 0.1212 0.1253 0.1530 0.1288
Kaolin#1 0.0985 0.1068 0.1809 0.1304
Kaolin#2 0.0748 0.0785 0.1258 0.1222
Kaolin#3 0.0904 0.0956 0.1464 0.2132
Nontronite#3 0.1593 0.1629 0.1639 0.1565
Desert_Varnish 0.2106 0.2088 0.2370 0.2949
Muscovite 0.0938 0.0927 0.0874 0.1127
AVERAGE 0.1118 0.1146 0.1596 0.1697
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Figure 2. Results on the AVIRIS Cuprite image: Comparison of the USGS library spectra (solid
line) with the signatures extracted by NMF- (dotted line).
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Figure 3. Abundance maps of MVC-NMF, MVES, L;,-NMF, and NMF-DSI for the Cuprite dataset

4. Conclusion

The paper considers the application of global information of hyperspectral imagery (i.e., the relation
between pixels of the hyperspectral image) and uses kernel function estimation methods to establish the
data structure of the hyperspectral image. The regularization term designed in the paper makes the
abundance matrix preserve the data structure of hyperspectral image. Because the abundance matrix
preserves data structure of the hyperspectral image, the accuracy of the endmember spectrum obtained
by NMF-DSI algorithm is improved. The experimental results of real data prove that NMF-DSI
algorithm is superior to the typical algorithms in detecting surface minerals.
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