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Abstract. Coalbed Methane (CBM) is a clean and highly efficient energy source. The prediction 
of its production performance is difficult because of the complex geological conditions and 
exploitation processes. The CBM well deliquification always has a long duration. Therefore, 
long-term prediction is more instructive than short-term prediction for fracturing treatment 
parameters. But there is a long-term dependence problem in the time series prediction. Therefore, 
in this paper long short-term memory networks (LSTM) are proposed to overcome the problem. 
The experimental results show that in the case of similar accuracy, the LSTM predict longer than 
artificial neural networks. And the LSTM are more accurate than the artificial neural networks 
in the same output time period. 

1. Introduction 
Coalbed Methane (CBM) is one of the unconventional gas resources. The development and utilization 
of CBM are beneficial to relieve the tense situation of conventional oil and gas supply, ensure the safety 
of coal production and protect the atmospheric environment. At Present, there is still a gap between the 
performance of CBM wells and the target of the rapid development of CBM industry in China [1]. 
Predicting production performance of CBM reservoirs is the basis of the design of CBM extraction, 
which is of great significance to the efficient mining of CBM wells. However, prediction of gas 
production from the CBM reservoirs is difficult due to the complex mechanisms of storage and transport 
and many influenced factors. 

Several theories and methods have been studied to predict production of oil and gas. The main 
theories and methods include Arps decline curve method [2], reservoir simulation [3], Weng’s model 
[4], type curve analysis [5], gray forecasting model [6] and artificial neural network (ANN) [7]. Most 
of these methods are good at short-term production prediction. But the CBM well deliquification usually 
has a long duration. At present, the method for long-term production prediction of CBM wells is still 
need to study. 

The performance of the CBM well is influenced by geological factors and engineering factors. The 
operation parameters and gas production values constitute time series. Recurrent Neural Networks 
(RNN) has been utilized in many field to predict time series [8-11]. But the shortcomings of overfitting 
and the exploding gradient commonly seen when training recurrent networks. In 1997, Sepp Hochreiter 
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and Jürgen Schmidhuber [12] proposed Long short-term memory networks (LSTM). And Felix Gers' 
team improved it in 2000 [13]. LSTM is an improved RNN which can overcome the shortcomings. 

This study focuses on predicting production performance of CBM reservoirs with LSTM. This paper 
is organized as follows. First, the model of the LSTM is presented. Second, experiments are executed 
with real data from CBM wells. Finally, the results are discussed and analyzed. 

2. LSTM model 
LSTM has been applied on learning latent task-specific features across many domains [14-16]. The 
biggest difference between a simple RNN and a LSTM is the hidden layer. LSTM takes a more complex 
memory block to replac the hidden node. But there was a weakness of the original LSTM networks in 
processing continual input streams. Gers et al. [13] proposed an improved memory structure to avoid 
the memory cells degenerating into common hidden nodes. Therefore, figure 1 is the structure of our 
LSTM memory block.  
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Figure 1. LSTM memory block with one cell [13]. 

The LSTM memory block has three gates and two squash units besides one cell. Using 
backpropagation through time (BPTT) gradient calculation as the method of backward pass, the 
equations for a recurrent neural network are as follows. 

2.1. Forward pass 
The three gates are nonlinear summation units. The activation function ‘f’ for the three gates is the 
logistic sigmoid. In order to control the result between 0 (gate closed) and 1 (gate open). They collection 
the input data tx  at time step t  and the output data 1th −  at time step 1t − . Equation (1), equation (2) 
and equation (3) correspond to input gate, forget gate and output gate, respectively. 

 ( )1
xi l hi l

t t t ii W x W h bσ −= + +
 (1) 

 ( )1
xf hf

t t t ff W x W h bσ −= + +
 (2) 
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 ( )1
xo ho

t t t oo W x W h bσ −= + +
 (3) 

where, xiW   is the weight of the connection from tx  to input gate, hiW  is the weight of the connection 

from 1th −  to input gate, xfW  is the weight of the connection from tx  to forget gate, hfW  is the weight 

of the connection from 1th −  to forget gate, xoW  is the weight of the connection from tx  to output gate, 
hoW  is the weight of the connection from 1th −  to output gate. And ib , fb  and ob are the bias of input 

gate, forget gate and output gate, respectively. 
The activation function ‘g’ and ‘h’ for two squash units are usually tanh. Therefore，the output tg

of input squashing is shown as Equation (4). The output of output squashing is tanh( )ts . 

 1tanh( )xg hg
t t t gg W x W h b−= + +  (4) 

where, xgW  is the weight of the connection from tx  to input squashing, hgW  is the weight of the 
connection from 1th −  to output squashing, gb  is the bias of the cell, ts  is the state of the cell at time step 
t . 

Both of the input gating and the output gating execute Hadama product function. In another word, 
the filled circle means Hadama product in figure 1. The update of cell states is following equation (5). 
Input gating and output gating accomplish the calculation of t ti g  and equation (6), respectively. 

 1t t t t ts s f i g−= +   (5) 

 tanh( )t t th o s=   (6) 

2.2. Backward pass 
The weights update according to minimizing the total Square error during a time T. Therefore, the Object 
function is  

 

2

1 0

1 ( ) ( )
2

N T
l l

N
l t

L o t y t
= =

= −
 (7) 

Then to take its partial respect to weights and biases. 

3. Application 
In order to study the predictive effect of the LSTM model on CBM production, an artificial neural 
network (ANN) model with 10 hidden nodes is utilized to accomplish the contrast test. The Junggar 
Basin in Xinjiang Province, China contains abundant CBM resources. The LSTM model and ANN 
model have been applied to this area. For example, the main reservoir and treatment parameters for well 
X are listed in Table 1. The bottom hole pressure (BHP) and casing pressure are shown as figure 2. The 
CBM production is shown as figure 3. The date of the data is between 2014.12.38 and 2017.12.24. In 
another word, it is totally 1103 days. 

Table 1. Reservoir and treatment parameters. 
Deep of Coalbed (m) Thick of Coalbed (m) Pump diameter (mm) Pump setting depth (m) 
816.989 15 44 972.90 
866.989 10 
929.989 27 
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Figure 2. BHP and casing pressure of well X. 

 

 
Figure 3. CBM production of well X. 

4. Results and discussion 
With twenty days interval, the predictive time length was increased and the accuracy of the prediction 
was compared. The testing data was the next training data according to the days interval. The set of 
predictive time length was {20,40,60,…，200}. Finally, the average accuracy of each models in every 
predictive time length was the experiment result as shown in figure 4. 
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Figure 4. The average accuracy of each models in every predictive time length. 

Obviously, both of the average accuracy of two models were decreased with longer predictive time 
length. And the predict effect of LSTM model always preceded the ANN model. For the results of ten 
predictive time length, the average accuracy of LSTM was 12.91% higher than ANN model. In addition, 
the same experiment was executed with 23 CBM wells data. Although the result of accuracy was 
different, the change rule was consistent. 

5. Conclusions  
The LSTM model presented in this paper have been useful in long-term prediction of the production 
performance of CBM reservoirs. We have demonstrated the benefits of the simulation with case studies, 
and draw the following conclusions: 

(1) With the same predictive time length, the accuracy of LSTM model is obviously higher than 
ANN model. The LSTM model has presented some advantages on dealing with mass data. 

(2) With the same accuracy, the LSTM model could predict longer term production. The LSTM 
model is also good at learning time series. 

In a word, LSTM is a method to predict long-term CBM wells production performance. It will 
provide the guidance for the design and construction of CBM wells. 
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