
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

MTMCE IOP Publishing

IOP Conf. Series: Materials Science and Engineering 392 (2018) 062107 doi:10.1088/1757-899X/392/6/062107

 
 
 
 
 
 

Frequency Analysis and Uncertainty Assessment of Annual 
Maximum Flood Series Using Bayesian MCMC Method 

Yunbiao Wu1, 2 and Lianqing Xue1, 2, 3  
1College of Hydrology and Water Resources, Hohai University, Nanjing 210098, 
China 
2Hohai University Wentian College, Maanshan 243031, China 
3College of Water Conservancy and Architectural, Shehezi University, Shehezi 
832003, China 
Corresponding author: wyb_0018@163.com 

Abstract. The calculation of flood quantiles and its uncertainty estimation are important 
subjects of hydraulic engineering planning and water resources management. In this study, the 
Bayesian theory is used to implement frequency analysis and uncertainty assessment of annual 
maximum flood series, the Generalized Extreme Value (GEV) distribution is considered as the 
flood frequency distribution line type, and the Markov chain Monte Carlo (MCMC) method 
based on Metropolis-Hastings algorithm is used to evaluate the GEV distribution parameters, 
then the posterior distributions of flood flow quantiles are used to calculate the point 
estimations and interval estimations of flood design values under different return periods. The 
results show that the fitting effect of the Bayesian MCMC method is the same as the maximum 
likelihood estimation (MLE), but the Bayesian MCMC more superior when the uncertainties 
were considered. Compared with the traditional methods of flood frequency analysis, the 
proposed Bayesian MCMC method provides not only the design flood estimated values, but 
also the confidence intervals of the estimated values. In addition, the lengths between upper 
confidence limits and estimated values are greater than the lower confidence limits and 
estimated values, this asymmetry is more realistic than the traditional methods such as the delta 
method, thus improve the reliability of flood frequency analysis. 

1.  Introduction 
Over the past few decades, floods have been seen as one of the most commonly and largely distributed 
natural disasters in the world. Flood disaster has become one of the obstacles that affected the 
sustainable development of economy and society, so the flood frequency analysis has gained more and 
more attention in hydrology [1-5]. 

In recent years, the Bayesian theory has been gradually introduced into hydrological frequency 
analysis. One of the most attractive advantages of the Bayesian approach is that it couples prior 
information with sample information to provide a theoretically consistent framework for integrating 
systematic flow records with regional and hydrologic information within a unit framework [4]. 
Another reason for using Bayesian approach in flood frequency analysis is the superiority in assessing 
the uncertainty of quantile estimations [5-6]. 

In this article, the GEV distribution is considered as the flood frequency distribution line type, and 
the Bayesian Markov chain Monte Carlo (MCMC) method based on Metropolis-Hastings algorithm 
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was used to evaluate the GEV distribution parameters, then the posterior distributions of GEV 
distribution parameters was used to calculate design flood values, the point estimations and interval 
estimations of flood design values are deduced in the end to quantitative assessment on uncertainties. 
As an example, the annual maximum flood series of four hydrological stations in Dongting Lake basin, 
China, were analyzed to validate the proposed approach.  

2.  Materials and methods 

2.1.  Study area and Data sources 
Dongting Lake basin is located in the middle and lower reaches of the Yangtze river region, with a 
total area of approximately 260000 km2. Runoff in this basin high inter-annual variability, leading to 
floods and droughts occur frequently. The economic loss of agricultural directly caused by floods is 
1.858×109 yuan [7]. The annual maximum flood peak flows of 4 hydrological stations in this basin 
are used. The information of the 4 hydrological stations is showed in Table 1. Data were obtained 
from the Hydrology and Water Resources Survey Bureau of Hunan Province.  

 
Table 1.  Information on the hydrological stations considered in this study 

River Station Time interval Record length 
(year) 

Mean 
( 𝒎𝟑/𝒔) 

Lishui Shimen 1951-2014 64 7074.34 
Yuanjiang Taoyuan 1953-2014 62 16007.26 

Zishui Taojiang 1951-2014 64 5530 
Xiangjiang Xiangtan 1951-2012 62 12775.32 

2.2.  Methods 

2.2.1. Bayes’ theorem. Assume data 𝑥 = (𝑥ଵ, ⋯ , 𝑥௡) to be realizations of a random variable, whose 
density falls within a parametric family ℱ = ሼ𝑓(𝑥; 𝜃): 𝜃 ∈ 𝛩ሽ, where the parameter 𝜃 is an unknown 
constant. The Bayes’ theorem is as follows: 𝑓(𝜃|𝑥) = ௙൫𝑥ห𝜃൯గ(ఏ)׬ ௙൫𝑥ห𝜃൯గ(ఏ)ௗఏ೭                                                            (1) 

where  𝜋(𝜃) and 𝑓(𝜃|𝑥) are the prior and posterior probability density of parameter 𝜃  separately. 𝑓(𝑥|𝜃) is the likelihood function of samples 𝑥. 𝛩 is the parameter space of parameter 𝜃. Any statistical 
inference about the parameter 𝜃 only based on this posterior distribution, and the asymptotic normality 
of the maximum likelihood estimate is no need for getting the asymptotic distribution of the parameter 
estimator θ෡ . The mean of the posterior distribution is used as point estimates of 𝜃, i.e. 𝜃෠ = 𝐸(𝜃|𝑥) ׬= 𝜃𝑓(𝜃|𝑥)𝑑𝜃௵ , and the certain probability interval (confidence interval) of the posterior distribution 
as interval estimate of 𝜃. 

2.2.2. Flood design values calculation. If 𝑧 denotes future flood design values, then the predictive 
density of 𝑧 can be expressed as: 𝑓(𝑧|𝑥) = ׬ 𝑓(𝑧|𝜃)𝑓(𝜃|𝑥)𝑑𝜃௵                                                    (2) 

By solving the following equation: 𝑃𝑟(𝑍 ≤ 𝑧|𝑥) = 1 − ଵ௠                                                           (3) 

It can give an analog of the m-year return level (i.e. 1 − ଵ௠ quantile) that incorporates uncertainty due 
to model estimation.  

2.2.3. MCMC method. To avoid calculating the integral in the posterior distribution, the MCMC 
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method can be used to generate samples from the posterior distribution. Various algorithms have been 
suggested to apply the MCMC method according to types of chains, among which the Metropolis-
Hastings algorithm have been most widely used [5-6].  

The efficiency of the MCMC algorithm can be checked by acceptance rate. The acceptance rate 𝑟 is 
defined as 𝑟 = 𝑛௔ 𝑛ൗ , where 𝑛௔ is the number of times that the proposal value 𝜃∗ is accepted, and 𝑛 is 
the total number of iterations. If 𝑟 is between 0.2 and 0.5, then the Markov chain is regarded as 
convergent [6]. 

2.2.4. Generalized extreme value distribution. The GEV distribution incorporates the Gumbel’s type I 
(𝜉 = 0), Fréchet’s type II (𝜉 ൏ 0), and Weibull’s type III (𝜉 ൐ 0) extreme value distributions. The 
cumulative distribution function of GEV distribution as follows [8]: 

𝐹(𝑥) = ൞𝑒𝑥𝑝 ቊ− ቂ1 ൅ 𝜉 (௫ିఓ)ఙ ቃିଵ కൗ ቋ , 𝜉 ് 0𝑒𝑥𝑝 ቄ−𝑒𝑥𝑝 ቂ− (௫ିఓ)ఙ ቃቅ ,          𝜉 = 0                               （6） 

where 𝜇, 𝜎,  𝜉 are the location, scale and shape parameter of GEV distribution, respectively, and  𝜇 ∈ 𝑅, 𝜎 ൐ 0, 𝜉 ∈ 𝑅, 1 ൅ 𝜉 (௫ିఓ)ఙ ൐ 0. 

3.  Results 

3.1.  GEV parameter estimation 
For convenience, the unit of annual maximum flood peak flow in the following sections is unified 
to  10ଷ 𝑚ଷ/𝑠 . Because there is no information on prior knowledge about the parameters, the 
independent zero-mean normal prior distributions on 𝜇, Φ = log𝜎,  𝜉 with variances νఓ = ν஍ = 10ସ,νక = 10ଶ were adopted. To make the Markov chain rapidly convergence, the MLE of  𝜇, 𝜎, 𝜉 were 
assigned to their initial values. The proposed distribution of three parameters 𝜇, Φ, 𝜉 is the random 
walk on the respective axes, i.e. 𝜇∗ = 𝜇 ൅ 𝜀ఓ,  Φ∗ = Φ ൅ 𝜀஍, 𝜉∗ = 𝜉 ൅ 𝜀క , where  𝜀ఓ , 𝜀஍ , 𝜀క  are 
normally distributed variables, with zero-means and variances  ωఓ , ω஍ , ωక . After a little trial-and-
error, the parameters ωఓ , ω஍ , ωక  of the four stations were selected, and all the acceptance rates 𝑟 of 
the proposal values 𝜃∗ = (𝜇∗,  Φ∗,  𝜉∗) were between 0.2 and 0.5.  

Figure 1 shows the MCMC sampling values produced by the 10,000 iterations of the GEV model 
parameters   𝜇 , 𝜎, 𝜉  from the posterior distribution at Shimen station, where 𝜎 = 𝑒஍ , and the 
maximum likelihood estimates (𝜇,𝜎, 𝜉) = (5.47, 2.56, 0.05) were used as the sampling initial values. 
Figure 1 indicates that the maximum likelihood estimates are reasonable as the initial values of the 
sampling, and it makes the Markov chains converge rapidly. To ensure the stationarity of the 
sequences, all the burn-in periods were selected as 500 though all the chains converge near the initial 
values. In this study, the mean of the MCMC simulated samples are used as the parameter estimates 
after deleting the first 500 burn-in simulations. 

 
Figure 1.  Bayes MCMC simulation for parameters of GEV model at Shimen station 
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Table 2 shows the parameter estimate results of the GEV distribution parameters based on the 
Bayesian theory. The confidence level of the parameter confidence interval is 95%. Compared with the 
traditional parameter estimation methods, the Bayesian method not only gives an estimate of the 
parameter, but also gives the parameter confidence interval, which represents the uncertainty of 
parameter estimation. 

 
Table 2. Estimation of parameters of GEV distribution based on Bayesian MCMC 

Station  Parameter  Mean 2.5%  97.5% 

Shimen 
μ 5.478 4.737 6.218 
σ 2.671 2.148 3.285 
ξ 0.053 -0.137 0.280 

Taoyuan 
μ 14.043 12.689 15.354 
σ 4.843 3.939 5.954 
ξ -0.196 -0.369 0.019 

Taojiang 
μ 4.455 3.967 4.977 
σ 1.855 1.510 2.278 
ξ 0.037 -0.117 0.249 

Xiangtan 
μ 11.326 10.276 12.406 
σ 3.755 3.054 4.650 
ξ -0.223 -0.444 0.030 

3.2.  Goodness-of-fit test 
Three goodness-of-fit tests were employed: (1) quantile plot; (2) root-mean-square error (RMSE); (3) 
Kolmogorov-Smirnov (KS) statistic [8].  

Figure 2 shows the quantile plots for the GEV models based on Bayesian estimation at the 4 
selected stations. From Figure 2, it is seen that the points are sufficiently close to the unit diagonals to 
lend support to the fitted models. 
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Figure 2.  Quantile plots for the GEV models at the 4 selected stations 

Table 3 shows the RMSE and KS test goodness-of-fit statistics at the 4 selected stations. From 
Table 3, it is found that all the KS statistics are between 0.07 and 0.09, and less than the critical values. 
All the GEV models based on Bayesian MCMC estimation and MLE have passed the KS test, which 
indicates that both the two estimation methods are applicable to GEV parameter estimation. By 
contrast the RMSE of the two parameter estimation methods at each station, it is seen that both the two 
methods almost have the same fitting effects. 

Table 3. Results of goodness-of-fit test 

Station Statistics Bayesian 
MCMC MLE 

Shimen KS statistics 0.0755 0.0765 
RMSE 0.4677 0.4026 

Taoyuan KS statistics 0.0841 0.0871 
RMSE 0.5650 0.5516 

Taojiang KS statistics 0.0724 0.0723 
RMSE 0.2654 0.2508 

Xiangtan KS statistics 0.0797 0.0827 
RMSE 0.5284 0.5338 

3.3.  Return level estimation 
The return level of the return period 𝑇 = 1 𝑝ൗ  can be calculated as: 𝑥ଵି௣ = ቊ𝜇 − ఙక ൣ1 − ሼ−𝑙𝑜𝑔 (1 − 𝑝)ሽିక൧,    𝜉 ് 0𝜇 − 𝜎𝑙𝑜𝑔ሼ−𝑙𝑜𝑔 (1 − 𝑝)ሽ,             𝜉 = 0                              （7） 
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applying this transformation to each of the vectors (𝜇௜, σ௜, ξ௜) leads to a sample from the corresponding 
posterior distribution of the 𝑇 = 1 𝑝ൗ  year return level, i.e. design flood peak flow. 

Table 4 shows that the values of flood design estimated by Bayesian method under different typical 
return periods at each station. It can be seen that the values of flood design estimated by Bayesian 
method under different typical return periods are less than the means of the corresponding 95% 
confidence intervals, and the confidence intervals are not symmetric about the design values. The 
lengths between upper confidence limits and estimated values are greater than the lower confidence 
limits and estimated values. This is because the Bayesian approach estimation is based on the true 
posterior quantile distribution, thus capturing the skewness of their posterior distribution. The 
asymmetry of the confidence intervals is more realistic than the traditional methods such as the delta 
method. In addition, it also can be seen from Table 4 that larger return periods have the larger design 
values, and the width of the corresponding confidence intervals are wider, which indicates that the 
uncertainty increase with return period. 

4.  Conclusions 
This study shows a Bayesian approach employed for flood frequency analysis using the GEV 
distribution as the line type. The method was implemented by the MCMC based on Metropolis-
Hastings algorithm. The posterior distributions of the flood peak flow were used to calculate design 
flood values and estimate confidence intervals of design flood values. The results showed that the 
proposed Bayesian MCMC method provided not only the design flood estimated values, but also the 
confidence intervals of the estimated values. As the Bayesian approach estimation is based on the true 
posterior quantile distribution, the confidence intervals of the estimated values are asymmetrical: the 
lengths between upper confidence limits and estimated values are greater than the lower confidence 
limits and estimated values. The asymmetry is more realistic than the traditional methods such as the 
delta method. Therefore, the Bayesian approach can be applied effectively to flood frequency analysis, 
and its results can improve the reliability of flood frequency analysis. 
 

Table 4. Different return level estimates of annual maximum flood peak flow 

Station Return periods 
(year) 2.5% Estimated 

values 97.5% 

Shimen 

10 10.261 11.905 14.390 
25 12.315 14.942 19.731 
50 13.674 17.364 24.658 

100 14.929 19.997 30.685 

Taoyuan 

10 21.121 22.880 25.256 
25 23.436 25.645 29.489 
50 24.714 27.431 32.887 

100 25.718 29.018 36.375 

Taojiang 

10 7.758 8.830 10.331 
25 9.209 10.831 13.644 
50 10.190 12.398 16.739 

100 11.099 14.035 20.401 

Xiangtan 

10 16.688 17.997 19.832 
25 18.348 20.015 23.337 
50 19.211 21.304 25.998 

100 19.816 22.442 28.806 
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