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Abstract. This paper deals with makespan minimization scheduling problem on two identical 

parallel machines with mold constraint. The mold constraint in this problem is described as a 

kind of resource-constrained. In the production of wafer fabrication, two jobs with same mold 

cannot be processed on two parallel machines at the same time. This problem is quite common 

in practice, but there are few literatures relevant to this problem. Since the problem is NP-hard, 

a mathematical model is discussed to describe and solve the problem and a heuristic is 

proposed. Computational results show that the proposed heuristic can efficiently obtain good 

solutions for medium and large size problems. 

1.  Introduction 

This problem arises from a real application in the production of wafer fabrication in semiconductor 

plant. There are silicon wafers starting out blank and pure. In wafer fabrication, the production process 

consists of five stages: cleaning of the wafer’s surface, applying of the photoresist, exposing of the 

wafer, striping the resist and etching the pattern. The exposing wafer is one of the most important 

stages because this step is to fulfill customer needs and the final wafer quality is decided in this step. 

At the stage of exposure, a kind of patterning tool known as mask usually severs as a mold. They are 

dismountable and contain patterns which can be transferred to an entire wafer in just a single exposure. 

According to the different customer orders, each wafer has a specific mold. In the wafer exposing 

process, the machine with molds is very expensive and therefore the number of machines is fewer than 

the number of molds in the semiconductor plant. Thus, molds are not fixed on the machines and 

should be changed all the time. To increase the efficiency of this stage, the scheduling problem of 

molds and jobs should be considered. 

In this paper, we consider a scheduling problem of a set {1,2,..., }N n  where there are n  jobs on 

two identical parallel machines named 
1M  and 

2M . There are q  mold types in the problem. Each job 

with a job processing time 
ip  where 1,2,..., ,i n  and corresponding mold 

im  where 1,2,..., ,i n  

should be processed on one of two identical parallel machines. Let 
kS  ( 1,2,...,k q ) be the set where 

jobs belong to the same mold type and 
kV  be the total processing time of 

kS . It is noted that 

1 2 ... qV V V    in this paper. Each machine can install at most two molds and remove them when 

necessary. Any mold on the machine cannot be replaced when job is processing and two jobs with the 

same mold cannot be processed at the same time as well. The mold replacement time is not considered 

in this paper. Each machine can process at most one job at a time. The job preemption, division, or 

cancellations are not allowed. The objective is to minimize the makespan. 



2

1234567890‘’“”

ATMME IOP Publishing

IOP Conf. Series: Materials Science and Engineering 389 (2018) 012005 doi:10.1088/1757-899X/389/1/012005

 

 

 

 

 

 

Following the three-field notation, the problem can be denoted as 
2 max| |iP m C , where 

2P  

designates the two identical parallel machines, 
im  represents the mold constraint for job i , and 

maxC  

denotes the maximum completion time (or makespan). The 
2 max| |iP m C  problem is NP-hard since the 

problem without mold constraint is known to be NP-hard and proved by Sethi[1] and Garey and 

Johnson[2]. 

In what follows, we review the literature related to the 
max||mP C  problem. There are several exact 

algorithms which can obtain the optimal solutions. Dell’Amico and Martello [3] presented a branch 

and bound algorithm based on sophisticated lower and upper bound computations and the dominance 

properties. An exact cutting plane algorithm based on the identification of valid inequalities was 

proposed by Mokotoff[4]. Dell’Amico et al.[5] presented an exact algorithm, which is based on a 

specialized binary search and a branch-and-price scheme. However, the exact algorithm can only be 

used for the small or medium scale problems. Many heuristics and meta-heuristics have developed for 

the 
max||mP C  problem. Graham[6] conducted the worst case analysis of the Longest Processing Time 

first (LPT) rule. In addition, they also provided a worst case analysis of an arbitrary list schedule for

max||mP C . A more sophisticated heuristic for
max||mP C , called MULTIFIT, was presented by Coffman 

et al[7]. The MULTIFIT algorithm based on techniques from bin-packing has a bound of 1.22. Then 

Friesen[8] improved the bound of this algorithm upon to 1.2. In addition, Lee and Massey[9] analyzed 

a heuristic combined by the LPT rule and the MULTIFIT algorithms. They used the result of LPT rule 

as the incumbent and then applied MULTIFIT algorithms with less iteration. Gupta and Ruiz-

Torres[10] presented a new heuristic based on bin-packing and list scheduling, called LISTFIT. 

Besides, metaheuristics have been applied in the 
max||mP C  problem. Liu and Cheng[11] proposed a 

kind of genetic algorithm (GA) to minimize makespan for an identical machine scheduling problem. 

They provided several different scale numerical examples to demonstrate that the genetic algorithm is 

efficient. Lee et al.[12] proposed a Simulated Annealing (SA) approach with hill-climbing moves to 

tackle the makespan problem on identical parallel machines. Davidović et al.[13] studied the static 

scheduling of independent tasks on homogeneous multiprocessor systems and proposed a Bee Colony 

Optimization (BCO) algorithm. The BCO algorithm belongs to the class of stochastic swarm 

optimization methods inspired by the foraging habits of bees in nature. Tian et al.[14] presented a 

Discrete Particle Swarm Optimization (DPSO) algorithm to solve the two stage assembly scheduling 

problem where the first stage is a workstation of several identical parallel machines and the second 

stage is a single assembly machine workshop. The results show that DPSO is an effective and efficient 

for assembly scheduling problem. The DPSO algorithm is also extended to solve our proposed 

problem due to its good ability to search solution. 

We also have reviewed some related references. According to the description of limited resource in 

the relevant literature, the mold constraints in this problem can be described to a kind of resource 

constraints. In practice, the resource constraints can be defined as the constraints for jobs handling and 

processing, such as automated guided vehicles, machine operators, tools, pallets, fixtures, industrial 

robots and so on. In this paper, the mold used in the wafer process can be as a tool which precludes the 

job processed with freedom. Hence, we can take this problem as a kind of Resource Constrainted 

Parallel Machine Scheduling (RCPMS) problem. The RCPMS problem was first studied by Garey and 

Graham[15] who show that greedy list schedulers can obtain an approximation ratio of 3 / 3m . Garey 

and Johnson[16] examined the computational complexity of scheduling problems associated with a 

model. They have proved the RCPMS problem as a NP-hard problem. Blazewicz et al.[17] considered 

the same problem with nonpreemptable jobs and an 
3( )O n  algorithm was given. Blazewicz et al.[18] 

and Reklaitis[19] gave a comprehensive review of the resource constrainted problem, including 

applications in the chemical processing industry, semiconductor manufacturing and so on. Daniels et 

al.[20] provided mathematical formulations for static and dynamic versions of the same problem. The 

characteristic of the problem is the dependence of the processing time on the additional resource 

allocated. Daniels and Hua[21] extend the formulation of the RCPMS problem for the case where the 
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job assignment to the machines is unspecified. They referred to this problem as the RCPMS problem 

and stated it as a NP-hard problem. More recently, Emrah et al.[22] reviewed the literature related 

RCPMS problem and presented integer programming models for two problems. Niemeier and 

Wiese[23] studied the identical parallel machine problem with an orthogonal resource constraint and 

present an algorithm with an approximation ratio of 2 . 

This paper is organized as follows. In next section, a mathematical model and a lower bound are 

presented for the 
2 max| |iP m C  problem. In Section 3, a heuristic is developed. The computational 

results are summarized in Section 4. Finally, we conclude the paper with a summary discussion on the 

further research directions in Section 5. 

2.  A mathematical model for 
2 max

| |
i

P m C  

The proposed problem is to schedule jobs with the mold constraints on two identical parallel machines 

to achieve the aim of minimizing the makespan. We now discuss a mathematical model to describe 

and solve the 
2 max| |iP m C  problem. We assume here that the mold types are described as different 

positive integers 
ia , i.e. if the mold types of two jobs are the same, the difference between them is zero. 

The decision variables are defined as follows: 

1

1, if job  is the first job on one of the machines,

0, otherwise,

1, if job  is scheduled directly before job ,

0, otherwise,

1, if job  is the last job on one of the machines,
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Let R  is a sufficiently large number and the 
2 max| |iP m C  problem can be formulated as the follows: 
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Equation (1) represents the objective function to minimize makespan. Constraint (2) ensures that at 

most two jobs may be the first job on the two machines. In constraint (3), each job must either start on 

one of the machines or be preceded by some other jobs. Similarly, constraint (4) presents that each job 

must either be succeeded by another job or be the last job on one of the machines. Constraint (5) 

guarantees that the completion time for the first job of each machine must be equal to or greater than 

its processing time. Constraints (6-8) ensure that two jobs with the same mold type cannot be 

processed at the same time. In constraint (9), the completion time is defined as the completion time of 

the predecessor job and its processing time. Constraint (10) states that at most two jobs can be the last 

jobs on the two machines. Constraint (11) presents that sequence of jobs is fixed by decision variables. 

Constraint (12) ensures that a job start on one of the machines should also be preceded by some other 

jobs. Constraint (13) defines 
maxC  as the makespan. 

2.1.  Lower bound 

A lower bound is introduced and evaluated with the following heuristics for the 
2 max| |iP m C  problem. 

Mokotoff [4] provided a mixed integer programming (MIP) formulation for the 
max||mP C  problem 

which is slack for 
2 max| |iP m C  problem. Thus, the optimal solution of the 

max||mP C  problem is used 

as a lower bound, named LB, for the proposed problem. The MIP formulation for the 
max||mP C  

problem is as follows:  

max

1
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1
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where, 

1 if job  is assigned to machine 

0 otherwise

j i
x


 


 

Example 2. Consider a 
2 max||P C  problem with job processing time given in Table 1. Applying the 

MIP formulation in a C++ application with Cplex and the optimal solution is 22. 

 

Table 1: The processing time and mold type of Example 1 

Job 1 2 3 4 5 6 7 8 9 10 

im   B D A A D B B D C C 

ia   2 4 1 1 4 2 2 4 3 3 

ip   1 7 2 5 7 1 8 2 2 8 
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3.  The proposed heuristic 

In this section, two conditions are provided and one of them is a special case which can be solved 

easily. For the other conditions, a heuristic based on the Longest Processing Time (LPT) rule are 

proposed to solve the 
2 max| |iP m C  problem. 

The first condition is a special case presented as follows. 

Lemma 1. If 1 2 1 ,q qV V V V        there exists an optimal schedule for the 
2 max| |iP m C . 

Proof. As we have emphasized, two jobs with the same mold cannot be processed on the machines at 

the same time. Thus, qV  is the maximum completion time, shown in Figure 1. 

4 8 12 16 20

Sq-1

Sq

S2S1 …………

t

M1

M2

 

Figure. 1. Gantt chart for Lemma 1. 

If 1 2 1 ,q qV V V V        two proposed heuristics are proposed in second condition. The basic 

idea of two heuristics is extended by LPT rule as a list scheduling method where n  jobs are sorted in 

descending order of processing time. Whenever a machine is available, an unscheduled job with 

largest processing time will be assigned to this machine. The heuristic is presented as follows. 

3.1.  Heuristic TLPT 

The proposed heuristic can be introduced as a two stage procedure. At the first stage, jobs with the 

same mold can be grouped as a job set 
kS  where 1,2,...,k q . The job sets, except set qS  with largest 

total processing time, can be assigned by LPT to the machines. At the second stage, the unscheduled 

jobs belonging qS  can be arranged by LPT rule to the front of one machine and on the back of the other, 

alternatively. Let 
i

MT  where 1 2i  , ,  be the completion time of two machines. 

The steps of the Two-stage LPT (TLPT) algorithm can be given as follows. 

Step 1. Let jobs with the same mold group into a job set 
kS . Calculate the total processing time 

kV  

where 1,2,...,k q .  

Step 2. Select all the job sets except qS  and assign the job sets by LPT rule to the machine with 

earliest start time. Obtain 1 2 and MT MT . 

Step 3. A dummy can be calculated by 1 2MT MT . Arrange remaining jobs by LPT to the machine 

with shortest machine completion time until the total processing time of those jobs is equal or larger 

than dummy. 
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Table 2: Computational results of PD and CPU time 

  Percentage Deviation  CPU time 

  (1,10)   (1,100)   (1,10)   (1,100)  

q
 

n TLPT VNS 
DPS

O 
 

TLP

T 

VNS DPSO  TLPT  TLPT 

4 20 2.24 0.69 0.69  2.03 0.53 0.53  0.07  0.07 

 50 0.59 1.25 2.42  0.86 0.66 2.49  0.17  0.16 

 100 0.14 4.14 5.26  0.25 4.12 5.88  0.32  0.31 

 150 0.19 6.70 9.11  0.11 6.65 8.05  0.51  0.47 

 
Ave

. 
0.79 3.19 4.37  0.81 2.99 4.24  0.27  0.25 

6 20 1.08 0.00 0.00  1.92 0.04 0.04  0.07  0.08 

 50 0.19 0.06 0.18  0.42 0.01 0.35  0.18  0.17 

 100 0.22 1.35 2.19  0.04 1.35 2.15  0.34  0.31 

 150 0.10 2.68 3.90  0.06 3.09 4.31  0.51  0.42 

 
Ave

. 
0.40 1.02 1.57  0.61 1.12 1.71  0.27  0.24 

8 20 0.86 0.00 0.00  0.59 0.02 0.02  0.09  0.07 

 50 0.15 0.00 0.04  0.07 0.02 0.06  0.18  0.17 

 100 0.07 0.52 1.06  0.08 0.41 1.03  0.29  0.29 

 150 0.00 1.35 2.08  0.02 1.41 2.11  0.46  0.46 

 
Ave

. 
0.27 0.47 0.80  0.19 0.46 0.80  0.25  0.25 

10 20 1.20 0.21 0.21  0.53 0.09 0.09  0.08  0.07 

 50 0.07 0.00 0.00  0.08 0.02 0.04  0.18  0.16 

 100 0.08 0.12 0.59  0.02 0.13 0.40  0.34  0.31 

 150 0.00 0.62 1.07  0.03 0.76 1.41  0.52  0.46 

 
Ave

. 
0.34 0.24 0.47  0.17 0.25 0.48  0.28  0.25 

 
Agg

. 
0.45 1.23 1.80  0.45 1.21 1.81  0.27  0.25 

Step 4. Assign the unscheduled job with largest processing time to the first position on the machine 

with shortest machine completion time. 

Step 5. Assign the unscheduled job with largest processing time to the last position on the machine 

with shortest machine completion time. 

Step 6. If qS  , obtain a makespan value and then stop; otherwise, repeat Steps 4 and 5. 

Example 3. Consider the same problem as Example 1. 

Step 1. 
1 3 4{ , }S j j , 

2 1 6 7{ , , }S j j j , 
3 9 10{ , }S j j  and 

4 2 5 8{ , , }S j j j . 
1

7V  , 
2

10V  , 
3

10V  , 

4
16V  .  

Step 2. 
1S , 

2S  and 
3S  are on 

1M  and 
2M , respectively. 

Step 3. 1 2 7MT MT  . Assign job 5 and job 8 on 
2M . 

Step 4. Assign job 2 to the first position on 1M  and ( )S q  . 

Step 5. .qS   

Step 6. 
qS  . The makespan value is 24 and stop 
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The solution of TLPT is 24 while the optimal solution obtained by MIP is 22. The ratio of '/   is 

1.09. The sequences on two identical parallel machines are  7,6,1,3,4,2  and  5,8,10,9 . The Gantt 

chart is presented as Figure 2. 

4 8 12 16 20

7 6

85

1 43

10 9

t

M1

M2

2

S3

S1

S4

S2

 

Figure 2. Gantt chart for TLPT. 

4.  Computational results 

To verify the proposed heuristics, extensive computational experiments were conducted. The lower 

bound was coded in combination of C++ and CPLEX 9.0, and all other algorithms were coded in C++. 

The algorithms were run on the Intel Core 2 CPU (2.2 GHz) with 2.0 GB RAM. 

The test problem was generated with 20,50,100,150n   and 4,6,8,10q  . The processing time 
ip  

was given randomly from uniform distributions (1,10)U  and (1,100)U  respectively. The Discrete 

Particle Swarm Optimal (DPSO) algorithm by Liao et al.[24] and Variable Neighborhood Search 

(VNS) algorithm by Mladenović and Hansen[25] are used as a comparison. Each of the problems was 

run ten times. The percentage deviation (PD) is computed as follows: 

max100 (22)
HC LB

PD
LB


   

where max

HC  is the makespan obtained by the respective heuristics and LB  is the lower bound 

acquired by the MIP formulation. It is noted that the stop criterion of DPSO and VNS is time limited 

within 10 seconds. 

Examining the Table 2, we can observe that TLPT have the performance with 0.45PD  . 

Moreover, TLPT has better performance when 4 and 6.q   The average PD is getting smaller as n  is 

increasing. Whenever 
ip  is from uniform distributions (1,10)U  or (1,100)U , the same situation can be 

generalized and the heuristic can obtain the solution within 1. 

In the Table 2, We can also observe that only when the job number is small, i.e., 20n  , VNS and 

DPSO perform better than the proposed heuristics. It is because the proposed heuristics based on LPT 

rule perform worse as the job decrease. We also can observe that VNS performs better than DPSO for 

all problems and the percentage deviation tends to decrease as the mold number and the job number 

increases. Thus, only VNS is used in the following comparison. 

5.  Conclusions and future research 
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In this paper, a two-identical parallel machine scheduling problem with the mold constraint, i.e., 

2 max| |iP m C , is considered. This problem is a real problem from the production of wafer fabrication. 

The objective function is to minimize makespan. A mathematical model and a lower bound are 

proposed to descript and evaluate the problem. A heuristic is provided for finding the solution. In 

addition, the Discrete Particle Swarm Optimal (DPSO) algorithm and Variable Neighborhood Search 

(VNS) algorithm are used as a comparison. Extensive experiments with different size problems show 

that the proposed heuristic can efficiently yield better solutions. 

The mold constraint is a common practice in industry, but it is seldom discussed in the scheduling 

literature. Extension of the results to other machine environments will be worthwhile in the future 

research. 
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