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Abstract. Parameters of Hill’s anisotropic elastoplasticity for diamond and Si, SiC, Ge 

semiconductors have been estimated from nonlinear stress-strain curves obtained by 

computational quantum chemistry. Using these parameters, finite element modeling of 

nanoindentation with Berkovich pyramid and frictionless scratching with spherical tip have 

been carried out. It has been shown, that the plastic anisotropy leads to the hardness anisotropy 

commonly observed by experimental indentation of (111), (011) and (001) crystallographic 

surfaces of the diamond-like crystals. The creep flow has been regarded in a quasi-static 

approach. Propagation of a median crack has been accounted by cohesive zone model. 

1. Introduction 

Indentation [1] is a common method of experimental determination of hardness and elastic properties 

of materials. In particular, nanoindentation and scratching experiments are widely used for testing thin 

film heterostructures. Since the indentation theory lacks analytical solutions, it is accompanied by 

computer modeling by finite element method (FEM), which requires data on plastic behavior of a 

material from other experiments, such as axial deformation of a rod beyond elastic linearity limit. 

However, a lack of such experimental data for materials of interest in turn forces researchers to 

calculate necessary properties of the materials by means of computational chemistry, especially when 

it comes to single crystals possessing all kinds of anisotropy. Indeed, for orthotropic materials (such as 

cubic diamond-like crystals C, SiC, Si, Ge), when compared to isotropic ones, not only the elastic 

anisotropy arises, when the shear modulus G becomes independent from the Young’s modulus E and 

the Poisson’s ratio ν, but the plastic anisotropy arises as well, when the elastic limit (yield point) for 

shear stress 𝜎𝑌
𝑠 becomes independent from the one for axial stress, e.g. compressive yield stress 𝜎𝑌

𝑐, as 

we are going to consider an indentation process that generally comprises only shear and compressive 

strains. The independent pair of shear and compression elastic limits can be described by Hill’s 

parameter h of plastic anisotropy [2]:  

 

ℎ𝑠/𝑐 = |√3 𝜎𝑌
𝑠 𝜎𝑌

𝑐⁄ |.
 

(1) 

If ℎ = 1, the equation becomes the Mises’ criterion of isotropic plasticity. 

2. Parameters of anisotropic elastoplasticity 

In our previous work [3], the nonlinear stress-strain curves up to creep or fracture limit for shear and 

axial deformations of C, SiC, Si, Ge crystal cells were calculated by computational quantum chemistry 

in ABINIT software for the ground state at 𝑇 = 0 K by two methods: DFT LDA with TM 
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pseudopotentials and DFT GGA with ONCV pseudopotentials. The averaged result for the current 

application is presented in the table 1. Limits of linear elasticity were estimated by bilinear 

approximations of the curves with logarithmic Hencky strain, so the resulting elastic constants don’t 

necessarily coincide with the usual values for small strains near the equilibrium. The nonlinear parts of 

the curves represented only anharmonicity and didn’t represent plastic irreversible deformations, since 

there were no corresponding crystal defects that appear at bigger scales and temperatures. So, the 

actual plastic yield points may differ from the linear limits obtained in this way, however there should 

be a correlation between them, which leads to the same Hill’s relation, not to mention that computed 

fracture limits usually coincide with the experimental data, so moving only the yield point doesn’t 

affect the bilinear curve very much. For FEM calculation beyond the ultimate strength, where creep or 

fracture occurs, we use a low-angle line of stress-strain dependency (1 or 5 % of the plastic line slope) 

to remain in equilibrium quasi-static approach (figure 1).    

 

Table 1. Input data for FEM computation with multilinear hardening law exemplified by figure 1. 

Yield (Y) and ultimate (U) stresses 𝜎 for compression (
c
) along [001] crystallographic axis and for shear 

(
s
), accompanied by the corresponding axial 𝜀 and shear 𝛾 strains. Poisson coefficient 𝜈 actually 

depends on strain, a value at zero strain is used for stiff diamond C, while a representative value at 

compressive yield point is taken for other materials. ℎ𝑠/𝑐 is the Hill’s anisotropic plasticity ratio 

between shear and compression, which is generally different from the one for tensile deformation [3]. 

 𝜀𝑌
𝑐 𝜀𝑈

𝑐  𝛾𝑌 𝛾𝑈 𝜎𝑌
𝑐(GPa) 𝜎𝑈

𝑐(GPa) 𝜎𝑌
𝑠(GPa) 𝜎𝑈

𝑠(GPa) 𝜈 ℎ𝑠/𝑐 

Ge –0.045 –0.15 0.055 0.21 –4.4 –9.5 3.7 12.1 0.307 1.46 

Si –0.065 –0.18 0.094 0.24 –7.3 –12.3 7.2 15.5 0.304 1.71 

SiC –0.107 –0.30 0.175 0.32 –27.9 –49.8 42.7 64.8 0.297 2.65 

C –0.161 –0.27 0.216 0.34 –161.8 –219.8 117.6 141.5 0.114 1.26 

 

 

Figure 1. Schematic stress-strain curve by 

the example of compression. The quasistatic 

approach to the creep line is used in the 

FEM calculation beyond 𝜀𝑈
𝑐 . 

3. Indentation with Berkovich tip 

Diamond three-sided Berkovich pyramid has its sides inclined at 65.27° angle to its geometrical axis 

aligned to the [001] crystallographic axis. The pyramid has been modelled with 100 nm tip curvature 

common for standard nanoindenters. FEM calculation of the 150 nm indentation process with account 

of Hill’s anisotropic plasticity has been carried out in ANSYS software. Normal Lagrange formulation 

for frictionless contact between the bodies has been chosen to exclude penetration error, which has 

crucial importance in this kind of simulation. Combined symmetry of the indenter and the crystal 

sample has been taken into account to reduce the computational problem. Different rotational 

orientations of the pyramid in respect to the crystal surface may physically lead to a bit different 

results, but this difference happened to be within numerical error.   
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Figure 2 shows an example of the FEM model with residual plastic strain after indentation. Most of 

the plastic strain is accumulated under the pyramid edges, where cracks are usually observed in the 

experiments. Formation of a main median crack has been calculated by cohesive zone model (CZM), 

using data on the fracture stress limits from the table 1 and data on the crack surface energy (~2 J/m
2
 

for Si) calculated by computational quantum chemistry in [4]. The formation of crack hasn’t impacted 

the value of the reaction force. 

 

Figure 2. Section view of the finite element models of indentation of Si(111) surface: (a) after 150 nm 

indentation with residual equivalent plastic strain plotted in logarithmic colormap, (b) median crack 

(white color) propagation by cohesive zone model at 70 nm indentation with total deformation plotted 

in color. Vertical projection of the pyramid edge is aligned to the Si [21̅1̅] axis. 

Figure 3 clearly shows by the example of silicon that the presence of plastic anisotropy leads to the 

different reaction forces for different orientation of the crystal sample, as it is commonly observed in 

the experiments. The Hill’s parameter ℎ > 1 reduces amount of plastic strain, thus narrowing the 

loading-unloading curves. Calculated hardness is 12.1 GPa, 11.8 GPa, and 10.9 GPa for Si(111), 

Si(011), and Si(001) surfaces correspondingly. Hardness is determined as a relation of the reaction 

force to the vertical projection of the contact area under conditions of a fully developed plastic zone.  

 
Figure 3. Loading-unloading curves of FEM-computed nanoindentation of different silicon 

surfaces for (a) anisotropic plasticity and (b) isotropic plasticity, Hill’s parameter ℎ = 1.  

4. Indentation and scratching with spherical tip 

A spherical tip, as the most suitable and safe for scratching tests, has been modelled with 25 μm radius 

of curvature. The spherical indenter exhibits the same hardness differentiation for various surfaces of 

Ge, Si [5], SiC materials as the Berkovich indenter. It is clear that nonzero component of the reaction 

force resistant to the direction of the scratching appears (figure 4(a)), but another lateral force may 
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appear as well. In the case of anisotropic plasticity, even elastically isotropic (111) plane (stiffness 

tensor is invariant upon any rotation around the cubic [111] axis) loses its symmetry, so that different 

directions of the scratching produce different plastic strain zones (figure 4(b)). The difference in 

normal components of the reaction force between the scratch indentation and the usual one is small, 

but noticeable (figure 5). 

 

Figure 4. Residual plastic strain (in color) after indentation of Ge(111) surface by 6 μm with 

concurrent scratching by 60 μm (a) along the [21̅1̅] axis (section view across symmetry plane) (b) 

along the axis rotated by 30° from the [21̅1̅] axis (normal view showing asymmetry in the case of 

anisotropic plasticity). 

 

 

Figure 5. Z-component of the reaction force for 

indentation with a 25-μm spherical tip compared to 

the same indentation with concurrent scratching by 

60 μm. The loading-unloading curve for SiC is 

almost fully elastic. 

 

5. Conclusions 

Introduction of anisotropic plasticity with the Hill’s parameter ℎ > 1 into finite-element calculation of 

indentation of diamond-like crystals Ge, Si, SiC has led to the correct hardness differentiation between 

the (111), (011) and (001) orientations of the crystals. Various aspects imposed by anisotropic 

plasticity on indentation and scratching tests have been graphically demonstrated. 
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