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Abstract. This paper provides the mutual low–temperature mass transfer in binary systems 

obtained by magnetron sputtering of niobium onto a heated copper substrate. Based on the 

kinetic equation of diffusion, the distribution of the niobium through the substrate’s depth at 

temperatures of 100, 200 and 300 °C is calculated. The method of calculating the concentration 

profiles of niobium, proposed in the manuscript, was verified using experimental data of 

energy–dispersive analysis. 

1. Introduction 

Niobium has a high corrosion resistance and performance characteristics under conditions of 

temperature influences and is widely used in the automotive, chemical and aerospace industries [1]. 

Application of niobium in bipolar plates manufacture for hydrogen fuel cells is also explained by its 

high corrosion resistance in sulfuric acid solutions compared to other transition metals, herewith 

niobium deposition into plates of austenitic AISI 316L steel can be implemented by magnetron 

sputtering [2]. 

At present, superconducting niobium thin films are used in a large number of microelectronic 

devices, such as Josephson junctions, quantum dot, superconducting quantum interference devices 

(SQUIDs), coplanar waveguide resonators [3, 4], and superconducting qubits [5]. Thin niobium films 

formed by spraying–deposition methods are used for manufacture of ultra–large integrated circuits, 

magnetometers, elementary particle detectors [6], high–frequency cryogenic switches [7] and 

gyroscopes [8]. Due to the high electrical conductivity, niobium is used for manufacture of such 

elements of micro electromechanical systems (MEMS) as wave filters, nanomechanical oscillators of 

microwave superconducting resonators [9]. 

In comparison with other superconductors, niobium has the highest critical temperature (TC=9.23 

K) and lower critical magnetic field (HC1(0)=143.24 kA/m) and can be deposited to substrates of 

various materials [10]. The magnetron sputtering method is used for thin niobium coatings deposition 

on the internal cavities (cells) of superconducting radio–frequency resonators (SRF) of elementary 

particle accelerators. 

Magnetron sputtering of niobium on the cavities of oxygen–free copper, which has a high 

conductivity, provides technological and economic advantages in comparison with the production of 
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resonators from the bulk niobium [11]. One of the ways to improve the functional characteristics of 

SRF (including higher magnetic field gradients in comparison with macroscopic superconductors) is to 

form two–layer structures by magnetron sputtering. Such structures consist of superconducting and 

insulating layers (for example, Nb/MgO) and provide the best shielding of the internal surfaces of SRF 

resonators [12]. Sputtering of niobium is applied for covering the cavity’s inner walls, made of 

oxygen–free copper with high conductivity (OFHC copper), to increase the quality factor and reduce 

the surface resistance of the cavities. The advantages of this approach are the better thermal stability of 

OFHC copper, its insensitivity to the magnetic field of the earth and the possibility of coating from a 

material with a high critical temperature (niobium, coating thickness of about 2 μm) [13]. 

Niobium magnetron sputtering onto a graphite substrate followed by high–temperature annealing 

of films with a thickness of 8 to 12 μm in the temperature range from 800 to 1800 °C is carried out for 

niobium carbides’ formation (Nb2C and NbC) and application in aggressive (corrosive, erosive) 

environments [14]. Heating leads to an increase in the hardness of the niobium coating and its 

adhesion to graphite, and also to a decrease in the porosity of the coating [15]. Investigation of thermal 

diffusion transfer in binary systems «niobium–zirconium dioxide stabilized with yttrium oxide (Y2O3–

ZrO2)» in the temperature range from 780 to 1000 °C allows the authors [16] to obtain an empirical 

relationship between the diffusion coefficient of niobium, the energy of its activation, and the pre–

exponential factor. 

Based on the literature review, it could be concluded that the method of magnetron sputtering is 

widely applied to the formation of thin niobium coatings of various functional designation. In a 

number of works, the increase in the physicochemical and mechanical characteristics of niobium films 

is achieved both during their deposition by heating the substrate and during subsequent annealing. For 

example, during the condensation of high–energy niobium ions with simultaneous heating of the 

substrate, a synergistic effect occurs, consisting in the epitaxial growth of niobium films with a low 

defect concentration [17]. 

A significant influence on the properties of binary systems is also rendered by the mutual thermal 

diffusion, which leads to a transition layer formation from the coating’s and the substrate’s atoms. The 

theoretical and experimental investigation of the mutual mass transfer of niobium and copper is carried 

out in the paper when a niobium coating is sputtered to a heated copper substrate. 

2. Mass transfer model in a binary system 

To calculate the niobium distribution through the depth of the «niobium–copper» binary system during 

the substrate heating, it was used the kinetic equation of diffusion: 
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~
 – is the mutual diffusion coefficient, P – distribution of internal 

stresses, Т – is the temperature in absolute scale, k – Boltzmann’s constant. 

The first summand in equation (1) reflects the mutual diffusion in the binary system by the 

concentration mechanism; the second summand corresponds to the thermal diffusion under the 

influence of the temperature gradient. In addition, this model takes into account internal stresses in the 

crystal lattice, caused by an external impact or an uneven temperature distribution. The diffusion 

coefficients (D0) and activation energy (Ea) of niobium and copper used for calculations are presented 

in table 1 [18]. 

In accordance with the proposed model [19], the atoms’ flow of the coating into the inner layers of 

the substrate occurs both by the concentration mechanism and by the thermal diffusion mechanism. 
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Table 1. Diffusion coefficients and activation energy. 

Element D0 (m
2
·c

–1
) Ea (kJ/mol) 

Nb 0.37610
–2

 381.2 

Cu 1.510
–2

 77.7 

3. Experimental results 

A niobium coating with a controlled thickness of 2 μm [20] was obtained by the magnetron sputtering 

method in the ADVAVAC VSM–200 installation at a copper substrate temperature of 200 °C. 

Analytical part of the study was carried out via scanning electron microscopy by using Jeol JCM–5700 

equipped with an X–ray energy dispersive spectrometer JED–2300. 

Figure 1 shows the experimental and calculated niobium concentration profiles (through the depth) 

depending on the heating temperature. Figure 2 shows a micrograph of the cross–section of «niobium–

copper» system with the points in which the energy–dispersive spectroscopy (EDS) analysis was 

performed. To the left of LG10000 point (figure 2), a compound is seen, into which the binary Nb–Cu 

system was mounted. 

 

 

 

Figure 1. Niobium concentration profiles (through 

the depth) depending on the heating temperature. 

 Figure 2. A micrograph of the cross–section 

of Nb–Cu system with the EDS points. 

As can be seen from figure 1, niobium concentration profile obtained by the experimental method 

coincides with the calculated data within the margin of error. 

 

 

 

Figure 3. EDS analysis «along the line» (а) and Nb–Cu distribution map (b). 
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The thickness of the transition diffusion layer is determined, which is of the order of 1 μm (figure 3(a)). 

Based on the analysis of the Nb–Cu distribution map (figure 3(b)), it can be concluded that the diffusion 

of copper (the element of substrate) into the coating occurs predominantly by the grain boundary 

mechanism. 

4. Conclusions 

The kinetic equation of diffusion makes it possible to obtain concentration profiles of niobium through 

the depth of the copper substrate, which allows to estimate the thickness of the transition layer and to 

carry out mass transfer simulation without experimental studies. 

Niobium concentration profile obtained by the experimental method coincides with the calculated 

data within the margin of error. In the course of the work it was established that the diffusion of 

copper (the element of the substrate) into the niobium coating in the temperature range from 100 to 

300 °C mainly occurs by the grain boundary mechanism. The flux of niobium ions incident on the 

substrate with the energy significantly higher than the energy of the lattice thermal vibrations leads to 

an increase in the mass transfer intensity in the binary system. 

Acknowledgment 

This work was supported by the Omsk State Technical University [grant number 18041В]. 

References 

[1] Liu E B, Cui X F, Jin G, Li Q F and Shao T M 2012 Key Eng. Mater. 525–6 9–12 

[2] Kim J–H, Jung D–W, Kim S, Hong S, You Y and Kim D 2012 Vacuum 12 1789–94  

[3] Bothner D, Clauss C, Koroknay E, Kemmler M, Gaber T, Jetter M, Scheffler M, Michler P, 

Dressel M, Koelle D and Kleiner R 2012 Supercond. Sci. Technol. 6 065020  

[4] Broussard P R 2017 J. Low Temp. Phys. 1–2 108–19  

[5] Bruno A, Mengucci P, Mercaldo L V and Lisitskiy M P 2013 Supercond. Sci. Technol. 3 

035004  

[6] Esposito A, Nakagawa H, Akoh H and Takada S 1999 J. Vac. Sci. Technol., A 6 3525–28  

[7] De Freitas T C, Gonzalez J L, Nascimento V P and Passamani E C 2016 Thin Solid Films 611 

33–8  

[8] Kolosov V N and Shevyrev A A 2014 Phys. Met. Metallogr+ 8 786–92  

[9] Kim Y W, Lee S–G and Choi J–H 2011 Physica C 21–22 1193–5  

[10] Beebe M R, Valente–Feliciano A–M, Beringer D B, Creeden J A, Madaras S E, Li Z, Yang K, 

Phillips L, Reece C E and Lukaszew R A 2017 IEEE T. Appl. Supercon. 4 1–4  

[11] Cattarin S, Musiani M, Palmieri V and Tonini D 2006 Electrochim. Acta 8–9 1745–51  

[12] Beringer D B, Roach W M, Clavero C, Reece C E and Lukaszew R A 2013 J. Appl. Phys. 22 

223502  

[13] Bemporad E, Carassiti F, Sebastiani M, Lanza G, Palmieri V and Padamsee H 2008 Supercond. 

Sci. Technol. 12 125026  

[14] Barzilai S, Raveh A and Frage N 2005 Vacuum 3–4 171–7  

[15] Barzilai S, Frage N and Raveh A 2006 Surf. Coat. Technol. 14–15 4646–53  

[16] Kuri G, Gupta M, Schelldorfer R and Gavillet D 2006 Appl. Surf. Sci. 3 1071–80  

[17] Krishnan M, Valderrama E, James C, Zhao X, Spradlin J, Feliciano A–M V, Phillips L, Reece C 

E, Seo K and Sung Z H 2012 Phys. Rev. ST Accel. Beams 3 032001  

[18] Heumann Т 2007 Diffusion in Solids (Berlin–Heidelberg: Springer–Verlag)  

[19] Postnikov D V, Blesman A I, Logachev I A, Logacheva A I, Tkachenko E A and Polonyankin 

D A 2016 Proc. Eng. 152 576–81  

[20] Polonyankin D A, Blesman A I, Postnikov D V, Logacheva A I, Logachev I A, Teplouhov A A 

and Fedorov A A 2017 IOP Conf. Ser.: Mater. Sci. Eng. 168 012069  


