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Abstract. The problem of exponential stability for linear system with mixed time-varying
delay is investigated. The stability of linear system are proposed with feedback control. Based
on the constructing of improved Lyapunov-Krasovskii functionals combined with Leibniz-
Newton's formula and by utilizing the integral inequality, new sufficient condition for the
stabilization of the systems is first established in terms of LMIs. A numerical example is given
to illustrate that the effectiveness of the proposed feedback control.

1. Introduction

The stability analysis of dynamic systems with time delays has been one of the most attention in the
field of control theory, because time-delay systems occur in various areas including chemical
engineering systems, neural networks, biological systems etc. The stability analysis for linear time-
delay systems has been discussed widely and various approaches to such problems have been
proposed and the references therein. Time-varying delays systems have been an interesting topic in
recent year such as interval time-varying delays [1-2], distributed time-varying delay [3], mixed time-
varying delays [4] and so on. The stability analysis and control of time-varying delay systems have
received considerable attention widely for the last few decades. Some delay-dependent conditions for
designing stabilizing feedback control [4-9] and intermittent feedback control [4,5], [9,10] are studied
in various system. Both of them have been considered see in [4] which is more advantageous in the
field of the stability of the control theory. In this paper, the problem of exponential stabilization of
linear systems with mixed time-varying delay with feedback control is studied. The time delay is a
continuous function belonging to a given interval, which means that the lower and upper bounds for
the time-varying delay are available, but the delay function is not necessary to be differentiable. By
utilizing the construction of improved Lyapunov-Krasovskii functionals combined with Leibniz-
Newton's formula and using the technique of dealing with some integral terms, new delay-dependent
sufficient conditions for the exponential stabilization of the those systems are first established in terms
of LMIs without introducing any free-weighting matrices. A numerical example is given to
demonstrate the effectiveness of the obtained results.

2. Network model and mathematical preliminaries
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Let us consider the linear system as equation (1)

£(1) = Ax(t) + Bx(t — h(t)) + C j x(s)ds +U(t), t >0, (1)

1=k (1)

X(t) = $(0), t €[00, 0], 7y =max{hy, d.ki, ko

where x(t) =(x,(0),...,x, (t))T eM" is the state vector; 4,B and C are known real constant matrices,

U(t) € R" is the control input. In order to stabilize the origin of linear system as equation (1) by means
of the state feedback controller U(¢) satisfying as equation (2),

U(t) =Du(t)+ Du(t—d@))+D, j u(s)ds, Vt > t,, 2)

1=k, (1)

where D,,i=1,2,3 are given matrices of appropriate dimensions, u(f)=Kx(:) and K is a constant
matrix control gain, and # is a non-negative integer. Then, substituting U(¢) into linear system as
equation (1),

t t

%(t) = Ax(t)+ Bx(t —h(t)) + C j x(s)ds + Du(t)+Du(t —d (1)) + D, j u(s)ds. (3)
t—k (1) t=ky (1)

It is clear that, if the zero solution of linear system as equation (3) is globally exponentially stable,
the exponential stability of the controlled linear system as equation (1) is achieved. The time-varying
delay functions A(#),d(¢), k (t) and k,(¢) satisfy the conditions as equation (4).

0<h <h(t)<h, 0<d()<d, 0<k(t)<k, 0<k,()<k, . 4)

The initial condition function ¢(f) denotes a continuous vector-valued initial function
of¢t e[—z’ O].

max ?

3. Exponential stability of linear delay system via feedback control
Let us denote

1 -1 hz_h
Ol OLlo0] = sup LK =12 =4, (P} 5= 200

h,—h

N =N o) [+N, o [,

-lpp- p! e “17 -1y p-1 1-e?
Ny =2 (P)+ [2;1 A (PRP™ iy, (PTUP™ [ j+dzm LT'LP )(T}

=22 (POP™ )+ 2 A (P RP™ )4 2, (PPUP [ e ]

—2ak —2ad

]+d/lma (P LTT LP™ )[1 ; J_}.k j’max (PILTWlLPI)[l—ZeZ“kz ]
a

a

l-e

kA (PSP )( -

Theorem 1 For some given scalars « >0, the linear system as equation (3) with time-varying delay

satisfying equation (4) are exponentially stable if there exist symmetric positive definite matrices
P>0,0>0,R>0,5>0, U>0,T>0, >0 and a matrix L appropriately dimensioned such that the

following symmetric linear matrix inequality holds, equations (5)-(9):
£,=2-[0 0 7 -1 0] e*Ufo 0 1 —I 0]<0, (5)

=,=2-[0 0 0 7 1] ™ U0 0 0 I -I]<0, (6)
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—0.5(e*" e )R 2kCP kLT 2L

—2ak
5 = * 2ke?™hs 0 0 |, )
* * kW0
* * * -2 de**

-0.5P  2kCP  d°L'

X, = * —2k1672ak‘S 0 <0, (®)
* * —d*T
where
I, 2y Xy Xy X
*Z, 0%,
L= * Ty, Xy > (9)
* * *OE, Zy
* * * 3

$,= P (A+al)+(A+al) P-DL-L'D] +3¢*D,"TD, + 2k,e **D,/WD, + 20
+hkS—05(e? "+ )R,

Y,=PA"-L'D",%,=e""R,%,=BP,%, = ""R,

2, =W R+ R+1n°U—1.5P+3¢’“D,"TD, + 2k,e**“D,"WD;, = h, — h,

Y, =BPX, =—e"Q-e?""R-e7"U,xX,, =e7"U,

Ty= _26_20(th7245 = e_zathazss = _e—2ath_ e’ R- e_zahEUa

then, the linear system as equation (3) has an exponential stability. Moreover, the feedback control is
equation (10),

u(t) =—LP'x(1) (10)

and the solution x(¢,¢) satisfies ||x(t,¢)|| = Fe“',w >0.
Y

Proof Let Y =P and y(¢) = Yx(t). By using the feedback control equation (10), let us consider the
following Lyapunov-Krasovskii functional as equation (11) show:

i

V(x(0)= > Vi(t) (11)

where as equation (12) show

V(t) = x" (0)Yx(0),V, () = j 2T (5)YOYx(s)ds, V, (¢) = j >0 xT (5)YOYx(s)ds,
t—h t=h
0 ¢ 0 ¢
V,(t)=h, j j 24 0xT (D) YRY3(7)d zds, V() = h, j j 5T ()YRY¥(7)d tds, (12)
—hy t+s —hy t+s
=t 0 ¢
Vs(t)znf j T (YU Ya(r)drds, V. (t) = j j XTI T (1)YSYx(r)drds,
—hy t+s —ky t+s
0 t 0 ¢
Vi) =d j jez"(r’”xT(T)KTT’IK)&(T)des,Vg(t): j .[ez"'“”)xT(r)KTW’IKx(T)drds.

—d t+s —kyt+s
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It is easy to check that equation (13)
7O <V (x@) (13)

By taking the derivatives of V,(¢),i =1,...,9 along the trajectories of linear system as equation (3),

and then apply Jensen's inequality, Cauchy inequality and Leibniz-Newton formula, we have the
following equations (14)-(22):

V()< yT (t)[PA + AP ] y(t)+ 2" ()BPy (t = h(t)) = 2y" ()D, Ly(t) + 2k, " y" (1) CPS ™' PC (1)

et j yT(S)Sy(S)ds+3ez“dyr(t)DzTDJy(t)+ e U (1=d ()T u(t—d (1))
t=k (1)

t

+Zkze“kzyr(t)D3TD3Ty(t)+%e'z‘“‘z [ u" (W u(s)ds, (14)
t—ky (1)
V,(t) = =2aV, +y" ()0y(t) =" y" (1= h ) Qv (=), (15)
V() = =2aV, + y" ()Qy(1) = e " y" (1= h, ) Qv (1= h,), (16)
V()< =2aV, + h2y" (1)Ry(t) — e ™" [y(z) y(t—h ]R[y(t) y(t—h)] (17)
Vi(6) < —2aV + b5 (ORy(0) e [ y(t)— y (1~ h ]TR[y(t)—y(z—hz)], (18)
Vo(t) < =2aV, +n° 3T (U (1) —e " [ y (1= h(1)) - ]U[ t=h(t)=y(t—h)]
e [y (t=h) =y (t—h(®) ]T [y(t=h)- (t—h(t))]
—(1-p) ,Mz[yt_h(,) (- hz)]TU[yt—h(f)) y(t=h,)]
~pe e [y(t—h)- (t—h(t) ) Uly(t=h)-y(t-h1)], (19)
V7 (t) < =2aV, +ky" ()Sy(t) —e " j y(s)Sy(s)ds, (20)
1=k (1)
Vi) S 2aVy+d’ " (LT ' Ly(t) + 27/ y" (L' T ' Ly(t) - e “u” (t—d (1)) T 'u(t-d (1)), (21)
V9 (1) < =2aV, +k,y" () L"W 'Ly(t) — e " j Y (W 'y (s)ds. (22)
1=k, (1)

By using the identity relation and then multiplying its by 237 (¢) gives as equation (23)

29T (OPy(t) + 23" () APy(6) + 23" ()BPy(t = h(1)) + 23" (1)CP f y(s)ds
t—kt,(z) (23)
=237 (t)D,Ly(t) + 23" (£)D,u(t —d(t)) + 25" (t)D, .[ u(s)ds =0

t=ky (1)

Hence, according to equations (14) - (22) and adding the zero items of equation (12), we have
equation (24)

V (x(0))+2a¥ (x(0) <& O (1= B)Z, + 2, | @) + ¥ (M y(0) + 7 (OM, 3(2), (24)

where £, and X, are defined as in equation (5) and equation (6), respectively, and
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0= i Y (t=h) ¥ (t=h®) ¥ (t=h)],

M, ==05(e”" +e" | R+2ke™ " CPS™PCT +k, L'W 'L +2e7*' 'T'L,
M, =-0.5P +2ke* CPS™'PC" ++dL'T"'L.

By (1-)%, + B2, <0 as in equation (24) holds if and only if =, <0and £, <0 as in equation (5)
and (6). Apply Schur complement, the inequalities M, <0 and M, <0 are equivalent to £, <0 and
¥, <0 as in equation (7) and equation (8), respectively. It follows from equations (5)-(9) and

equation (24), we obtain equation (25)
V(x(®))+2aV (x())<0,vt > 0. (25)

Integrating both sides of equation (25) from 0 to ¢, and using the condition equation (13), we have
equation (26)

V() V>0, (26)
e

||V (x(t))” <

Finally, by estimating V' (x(0)) , we have that ||V(x(t))||£ \/Ee“’,wzo, which implies the linear
Y

system as equation (3) is globally exponential stable under the controller U(¢) as in equation (2), then
exponential stability of the controlled linear system as equation (3) is achieved.

4. Numerical example
Example 1 Consider the linear feedback control (3) with the parameters

-03 0.1 -03 0 -0.1 0.1 2 3 4 2 2 1
o R ) PP A P O
0 0.2 -0.1 -0.1 0.2 -0.3 35 31 11
where A =0.1,h, =0.4,d =0.3,k, =0.1,k, =03 and « =0.1. Then, using the MATLAB LMI control
toolbox to solve in (5)-(9), we obtain the solution as follows:

3.0305 0.7147]  [0.0754 0.0584] ~ [0.6304 0.2910] ~ [0.8620 0.1010)
0.7147 0.6970 | | 0.0584 0.0513|" |0.2910 0.3079| |0.10 10 0.2662

0.0093 —0.0344] [ 0.0565 —0.0350] _ [1.5603 0.3950]  [-0.0064 0.0317
-0.0344 0.1513 |7 | -0.0350 0.1104J|’ 03950 0.4117] " | 0.0266 -0.1727]

The numerical simulation of linear system as equation (3) with the parameters as equation (27)
with time-varying delays h(r)=0.1+0.3|cos{|, (1) =0.1sin].
The initial condition ¢(r)=[0.5coss,—0.5coss], Vs €[-0.4,0] and without feedback control is

represented in figure 1, which shows that the linear system as equation (3) is unstable. Figure 2 shows
the trajectories of x(r) and x,(+) of linear system as equation (3) with time-varying delays

dt)=k,@) = O.3|cost| via feedback control. The method proposed in [2] is not applicable for the case
that the delay function is not necessary to be differentiable and the improved control input.

5. Conclusion

This study has investigated the stability of dynamical system with mixed time-varying delays via
feedback control. Based on the constructing of an improved Lyapunov-Krasovskii functionals
combined with Leibniz-Newton's formula and using the integral inequality technique of dealing with
some integral terms, new delay-dependent sufficient condition for the exponential stabilization of the
these systems are first established in terms of LMIs without introducing any free-weighting matrices.
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The delay feedback controllers designed can guarantee the exponential stability of the dynamical
system. A numerical example is provided to show the advantages of the present results.

5 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 2
Time t

Figure 1. The trajectories of x (¢)and x, () of the uncertain linear system

with interval time-varying delay and without feedback control activated.
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Figure 2. The trajectories of x,(¢)and x, () of the uncertain linear system
with interval time-varying delay and feedback control activated.
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