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Abstract. The lying identity of an access point (AP) is one of the most serious threat in Wi-Fi
positioning because an adversary can easily acquire a valid address by monitoring the
transmission and masquerade as another AP in the networks. This study proposes a robust Wi-
Fi localization algorithm that can tolerate the liars instead of explicitly detecting them. The
proposed algorithm considers all possible combinations of APs in an unionbased approach
such that the adversaries cannot easily affect the positioning results by masquerading APs. On-
site experimental results demonstrate that this approach apparently achieves more robust
location estimation than the Bayesian approach and the cluster-based method in the presence of
lying identities.

1. Introduction
Secure localization has gained considerable attention in the last several years because position
estimations are often required for critical applications such as location-based authentication [1], [2],
[3]. Today, many location systems utilize the base station’s broadcasting power in wireless or cellular
networks to infer the user’s location due to the wide coverage and the widespread use of receivers [4],
[5]. Among various approaches, fingerprinting is a popular location architecture, in which the user’s
location is estimated by comparing received signal strength (RSS) with the values pre-stored in a
database [6], [7]. This architecture allows the location system to reuse existing wireless infrastructure
[8], [9]. Recently, the massive deployment of Wi-Fi access points (APs), and the popular RSS sensing
function on mobile devices make Wi-Fi a suitable technology for developing such location systems
[10], [11]. However, due to the license-free spectrum (2.4GHz) and the shared nature of the wireless
medium, the propagated radio waves in Wi-Fi networks are susceptible to attacks. Among various
attacks, the lying identity of AP is definitely one of the most serious threat [12], [13].

In a typical 802.11 Wi-Fi environment, the MAC address is a unique identifier for an AP in Wi-Fi
networks. This address is important for a location system because it indicates which AP transmits the
signal. However, an adversary can easily acquire a valid MAC address and masquerade as another AP
in the networks. Figure 1 depicts a typical scenario where the Wi-Fi network contains a lying identity.
In this case, users in the Wi-Fi network cannot distinguish signals from AP1 and the lying AP. Such
lying identities have a serious impact on a location system because the RSS value from AP1 mixes the
lying data. That is, the adversary can easily fool the Wi-Fi location system by monitoring the
transmission, masquerading APs, and changing the lying AP’s broadcasting power.

The main contribution of this work is to use an enhanced probabilistic localization algorithm in [17]
for building a robust Wi-Fi location system in the presence of lying identities. The proposed method of
dealing with lying identities is to design dependable localization scheme that tolerates the liars instead
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of explicitly detecting them. Compared to the traditional probabilistic approaches which use the
intersection of RSS from all APs, the proposed algorithm considers all possible AP combinations in an
union-based approach such 2 that the adversaries cannot easily affect the positioning results by
pretending APs. The main advantage of this approach is that a lying identity contributes little to the
localization process, and thus, achieving more robust location estimations under security threats. `

Figure 1. AWi-Fi network contains a lying AP, where the RSS values from AP1 mix the lying
data.

2. Background and related work
In this paper, we focus on the fingerprinting-based indoor location system that can effectively defend
against lying identities in Wi-Fi networks. In a fingerprinting-based location system, the online stage
is more vulnerable to attacks because the validation and detection schemes can be applied during the
off-line stage. Moreover, the training data can be collected over various days to avoid corruption. Thus,
this study assumes an attack-free condition in the off-line stage. Researchers have proposed many
mechanisms to defend various attacks, including sybil [19], spoofing [15], [20], and transmit power
attacks [13], [21].

Common approaches to securing wireless localization fall into two categories: attack detection and
elimination, and robust localization schemes. The first method tries to detect the attacks and eliminate
them from consideration during the positioning procedure. For instance, Liu et al. filtered out
malicious beacon signals using the consistency among multiple beacon signals [22]. The second
method of dealing with attacks is to design a robust localization scheme. For example, Li et al.
developed two robust statistical methods, including a least median square position estimator for
triangulation-based systems, and a median-based distance metric for fingerprinting location systems
[23]. Liu et al. proposed a voting scheme to achieve attack-resistant location estimation [22].

3. Proposed algorithm
Assume a device senses N APs, then the observed RSS can be represented by a vector X with N
elements as X=( �� , �� , · · · , �� ), where �� means the observed RSS from the n-th AP. A
fingerprinting location system regards X as an input and outputs the estimated location by a previously
constructed RSS-location relationship. However, the presence of cheating APs may cause some xn



3

1234567890‘’“”

CMSME 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 383 (2018) 012054 doi:10.1088/1757-899X/383/1/012054

totally unreliable and thus, result in a fake position of the user. The problem in robust localization is
how to correctly locate the user given X which contains some lying �� . In traditional probabilistic
location systems, the joint probability of all sensed observations is estimated for all candidate
locations to find the user’s position. The main idea of such approaches is that each �� is combined
based on the “and” operator, denoted by ∧. This is because traditional methods assume all APs
behave honestly. Assuming each �� is independent, the joint probability of measuring X at a certain
location L equals the product of the individual probability of �� as:

P � � � t �� � �� �� � �� �
� t �� � t �� � �t �� � (1)

Because of the multiplication, �� ’s small probabilities dominate the overall probability in Eq.1.
This property is desirable in a normal condition because the multiplication allows the location system
to effectively discriminate the neighboring locations. However, such characteristic makes the
positioning algorithm sensitive to lying identities. An adversary can easily affect the location
estimation by controlling the lying AP to produce a fake signal strength �� The fake xn produces a
small P(xn|L) due to a mismatch between the lying data and the lying-free database. Unfortunately,
this small value destroys the location system’s ability of generating a large probability P �� � at a
correct location. This explains why the method in Eq.1 is susceptible to lying APs. Here we assume
that the database is lying-free because many detection schemes can be applied to the data during the
offline stage whereas the online lying detection is difficult.

This study proposes a general probabilistic approach to consider possible lying APs. Unlike the
model in Eq.1, the individual probability of �� is combined via an “or” model. This model assumes
that the RSSs from reliable APs may be any �� or any combination among �� belongs to the complete
set. This can be formulated by the “or” operator ∨ as: �� � �� � ���� �� , where X∨ is a
combined observation based on the “or”, representing the possible true APs in X. In mathematics, the
“or” is a logical operator that results in true whenever one or more of its arguments are true.
Considering a three-AP case (N=3), X∨ = �� ∨ �� ∨ �� . These combinations characterize that the
observed RSS vector encounters, respectively, two-lying, one-lying and lying-free conditions. The
probability of this or model can be obtained by the probabilistic rules of the union of two random
events: P(A∨B)=P(A) +P(B)−P(A∧B). More specifically, the proposed algorithm computes P(X∨)
based on a recursion as:

P ����
� �� � � t ����

�t��� � � t �� �
t t ����

�t��� � � �� �
m � �,�,N (2)

Assuming that the observations are independent with each other, Eq.2 is simplified as:
P ����

� �� � � t ����
�t��� � � t �� �

t P ����
�t��� � P �� �

m � �,�, N (3)
Finally, the estimated location coordinate can be calculated as the average of all reference locations

by adopting their new probability as weights:
�� � ���

� t �� ��� � �� (4)
where Lˆ is the estimated location, R is the number of reference locations, �� is the coordinate of the r-
th reference location, and P �� �� represents the union-based posterior probability of measuring X at
the r-th reference location. The component of P �� �� , P �� �� can be computed as

P �� �� � �
����,�

��h t ��t��,�
���,��

(5)

where ��, � and σ��, � represent the mean and variance of the n-th AP and at the r-th reference location.
These parameters can be obtained by maximum likelihood estimation as
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���,� � t��max
���,�

���
� t ����h ��,�� (6)

where K is the number of training samples and ��, � = {��, �, σ�, �} are the unknown parameters of the
n-th AP and at the r-th reference location. A necessary condition that ��, � must satisfy is the gradient
of Eq.6 with respect to ��, � to be zero. These parameters are estimated by using K training samples
during the offline stage.

4. Experimental setup and results

4.1. Experimental Setup
We placed three WiFi APs in the target area and collected realistic RSS data at 27 different reference
locations to build a fingerprinting location system. We used an Asus laptop with Windows XP as the
mobile node, and NetStumbler network software to gather RSS. The size of the test-bed was 70 m2
and RSS was measured 200 times for each reference location. We then selected 15 locations, separated
by a distance of 1.5 to 2 meters, as the training data. To simulate the lying identities, we choose
specified MAC addresses as lying APs. Furthermore, RSS from the lying AP is changed to an
alternative AP’s data. That is, the RSS samples from normal APs used in positioning mixed with
different ratios of the lying RSS. The experiments compared with the Bayesian and the securing
cluster-based scheme [15], [16].

4.2. Performance Evaluation
The first experiment evaluates the positioning performance of our algorithm when two lying identities
exist. Table I shows that our approach apparently improves the robustness in the presence of lying
identities. All statistical errors show a significant reduction based on our approach. This means that a
malicious adversary cannot easily fool our location system by masquerading APs. Numerical results
show that the proposed algorithm outperforms the Bayesian and the cluster-based method in reducing
the 50-th and the 67-th percentile localization errors by 5.42-26.76%, and 18.89- 34.24%, respectively.
Table I also indicates that the Bayesian approach is the most sensitive to lying identities, as its 90-th
percentile localization errors increased to almost six meters. This is because the probabilistic model
that the Bayesian approach adopts is susceptible to lying identities.

The next experiment investigates the impact of different mixture ratios of lying data. Figure 2(a)
shows the standard deviation and mean positioning error versus the mixture ratios for different
algorithms. The lying ratio represents the power of the lying identities, where 0% represents a normal
condition and 100% indicates the total replacement of actual data. Figure 2(a) shows that the proposed
model significantly improved robustness compared with other methods. As the lying ratios increased,
both the mean and SD error of the proposed algorithm remained almost fixed, whereas that of
traditional approaches clearly increased. This again indicates that our location system is more secure
and robust to tolerate the lying identities.

The next experiment considers an alternative scenario in which only one lying AP exists in the
environment. Figure 2(b) compares the positioning performance in this case. This figures is generally
consistent with figure 2. The main difference is that the proposed algorithm shows a mean-error
improvement when the lying ratio exceeds 50%. In addition, the performance is better while reducing
one identity, as compared figure 2(a) with figure 2(b).

Table 1. Five statistical errors comparison when two lying identities exist with a mixture rate 100%.
Median error Mean error SD error 90-th percentile error

Bayesian 3.2149 3.3103 1.7328 5.8423
Cluster-based 2.4897 2.7693 1.5865 5.4099

Proposed algorithm 2.3547 2.4585 1.0036 3.5978
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(a) (b)

Figure 2. Standard deviation and mean positioning error versus the mixture ratio for different
algorithms under two lying identities(a) and one lying identity(b).

5. Conclusion
Secure wireless positioning is important because the location estimations are often input to some
critical location-based services. However, due to the nature of the wireless medium, the broadcasting
radio is vulnerable to a variety of malicious attacks such as the lying identity in Wi-Fi networks. This
study proposes a robust fingerprinting localization algorithm that consider the existence of lying APs.
By considering all possible AP combinations in an union-based approach, our location system allows a
lying AP to contribute little to the localization process, and thus, achieving more robust location
estimations under security threats. On-site experimental results demonstrate that our approach
apparently improves the robustness in the presence of lying identities.
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