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Abstract. Bolted joints have a significant effect on the dynamical behaviour of assembled 

structures. Accurate contact stiffness model of bolted joint is crucial in predicting the dynamic 

performance of bolted structures. In this research, a modified three-dimensional fractal model of 

normal contact stiffness is presented to more accurately predict the dynamic characteristic of a 

bolted assembly. In the present model, while the contact deformation exceed the critical value 

the elastic-plastic contact is used to take the place of Hertz elastic contact in the traditional M-B 

model, and revise the drawback that elastic-plastic contact occurs before elastic contact in 

existing elastic-plastic fractal models. As the increase of contact force, the plastic deformation 

of single asperity is considered again, which is omitted in the two type fractal models. An 

experimental set-up with two T-shaped specimen is designed conducted to verify the efficiency 

of the proposed model. Comparing with the ZX elastic-plastic fractal model, the present model 

can predict contact stiffness and dynamic performance more accurately, particularly, while for 

higher contact loads. The results show that the modified elastic-plastic fractal contact model can 

be used to more accurately predict the stiffness and dynamic characteristic of bolted structures 

in the machine tools. 

1. Introduction 

The dynamic behaviour of bolted structure plays a significant role in determining the machining stability 

and precision of a machine tool. The study shows that up to 90% of the system damping is provided by 

the joints, and 60% of the system stiffness comes from the joints[1]. The bolted joint is one of the 

weakest parts of the machine tool. The dynamic behavior of bolted joint is can be affected by the 

geometry and machining precision of contract surface, property of material and external load. The 

micro-contact theory can describe the relationship of the preload, surface roughness, and material 

characteristics, it make it possible to accurately model bolted joints and to optimize bolted assemblies.  

The micro-contact mechanics of bolted joints is based on the geometry topography of surface and 

Hertz  

contact theory. Fractal geometry has been widely used to study engineering surfaces exhibiting random, 

multi-scale topographies and self-affinity[2]. Majumdar and Bushan[3] developed one of the first fractal 

contact models describe the contact of rough surfaces (referred to in the following as the MB model). 

Komvopoulos and Yan[4] developed a three-dimensional fractal contact model, based on MB 

model(referred to in the following as the KY model), to calculate the contact load and contact area of 

rough surface. Some elastic-plastic contact models[5, 6] were proposed, based on the Hertz contact 
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model. Lin [6] determine the elastoplastic regime of a spherical asperity in terms of the interference of 

two contact surfaces (LL model).  Kogut and Etsion [5] gave the more detailed division for the elastic-

plastic deformation area into two stages, using finite element method. Wen and Zhang[7, 8] built up the 

fractal model for normal contact stiffness of machine joint surfaces, based on the M-B model, which 

Hertz contact theory between a sphere and a plane and the contact fractal theory between rough surfaces. 

Li[9] introduced a three-dimensional fractal model of normal contact stiffness of joint surface, the the 

friction factor was also coincided in normal contact stiffness fractal prediction model. Zhao and Xu[10, 

11] proposed a 3D elastic-plastic model (ZX model), based on YK model and LL model, and obtain the 

normal stiffness with uneven pressure distribution[12]. While contact pressure over a critical value, only 

elastic deformation is be coincided, in all models based on the traditional M-B model. In addition, 

existing elastic-plastic fractal models also suffers from a drawback that, the transition of the contact and 

deformation state are from elastic-plastic to elastic. 

In this paper, a modified three-dimensional contact stiffness fractal model is proposed. Instead of 

Hertz elastic contact, as the increase of contact pressure, elastic-plastic contact and plastic deformation 

are also coinsided in present model. An experimental set-up with two bolted specimens is designed for 

validating the presented model. The normal stiffness are assigned to the MATRIX 27 element for 

analyzing the dynamic characteristic of bolted assembly, using ANSYS soft. The experimental natural 

frequency and mode shape are compared with the presented model and YX model. The results show 

that, the present model can predict contact stiffness and dynamic performance more accurately, 

particularly, while the preload is greater. The presented model can be used to more accurately predict 

the stiffness and dynamic characteristic of bolted structures in the machine tools. 

2.  The modified elastic-plastic fractal contact model 

The machined surface is continuity, non-differentiability and statistically self-affinity. These 

mathematical properties are satisfied by the two-dimensional Weierstrass-Mandelbrot (W-M) function 

given in M-B fractal contact model[2, 3]. Yan[4] and Komvopoulos[13] extended M-B fractal contact 

model to a three-dimensional contact model given by: 
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where the parameters x, y are the planar Cartesian coordinates, D is the fractal dimension of surface 

profile, (1<D<2). G represents fractal roughness parameter. γ is dimension parameter of the spectral 

density (γ=1.5). L is the sampling length, 
n  is the random phase. n is frequency index, maxn  is the 

upper limit of n. With the base wavelength and the corresponding frequency index n0.  
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And then, the W-M function for the single asperity can be written as, 
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2.1 The modified elastic-plastic contact model of asperity 

The asperity interference δ for single asperity is equal to the peak-to-valley amplitude of the cosine 

function 0 ( )z x . For a given contact spot with an truncated area ( 2=a r  ), the δ can be given as[14, 15] 
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According to Chang and Etsion[16], the critical deformation thickness δc corresponding to the 

yielding behaviour is expressed as 
2
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                                                                                       (5) 

where k is the hardness coefficient, and H is hardness of the soft material. k is the coefficient related 

with the passion ratio v, and can be written as k=0.454+0.41v. 

As defined, the critical contact area can be obtained as: 

( )
( )

1
11 2 2( 2) 2 2

4 2

2 ln

( )

D D D

c D

G E
a

kH





− − −

−

 
 =  

  

                                                                (6) 

Kogut and Etsion[5] extend contact model of asperity to elastoplastic regime in a range of 1<δ/δc 

<110. With a distinct transition in the contact behavior at δ/δc=6, the elastoplastic regime was divided 

into the first (1<δ/δc <6) and second elastoplastic (6<δ/δc <110) regimes. 

According to Eq.(3), the dimensionless interference values δ/δc is obtained  
3
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Be differ from the existing elastic-plastic fractal model in Refs[10, 15] , δ/δc is expressed as: 
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Eq.(8) is be inconsistent with Eq. (3), it is means that Eq.(8) is unreasonable to used in fractal model. 

The critical contact area, epa  at δ/δc=6 and pa  at δ/δc=110, can be expressed as, respectively. 

2

36 D
ep ca a− =                                                                                (9) 

2

3110 D
p ca a− =                                                                           (10) 

According to M-B fractal model and other fractal models based on M-B contact theory[7, 12, 17], 

with ca a  , asperity is in elastic deformation regime, and Hertz theory is adopted to describe the contact 

characteristic. In this paper, according to Eq.(7), while ca a  , δ > δc is obtained. Instead of Hertz elastic 

contact, K-E elastic-plastic contact model is adopted in the range of c epa a a    . 

Substituting Eqs. (6-8) into the relationship of contact load f, area a and the dimensionless 

interference δ/δc , in KE model, the relationship of contact load f, area a and contact truncated area a

can be obtained, as follows: 

(1) In the first elastoplastic deformation regime (
c epa a a    ) 
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1 1

D
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 (2) In the second elastoplastic deformation regime (
ep pa a a    ) 

 
(1.526 0.263 )

2 2

D
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Where H1, and H2 are the parameter related with the fractal parameters and material properties, 

respectively, can be expressed as. 
( ) ( ) ( )
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In the deformation regime δ > δc ( pa a  ), asperity is in the fully plastic deformation regime. Besides, 

introduced by models based on M-B fractal model[3, 4, 7, 12], the deformation of asperity is also 
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assumed as fully plastic deformation, while ca a  . The contact truncated area and contact load of a 

single asperity in the fully plastic deformation regime are written respectively as 

pf Ha=                                                                            (13) 

Summing up the above, the normal contact load of asperity, in deformation regime, can be rewritten 

as follows: 

2
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                                     (14) 

2.2 Contact analysis of rough surface 

The three-dimensional size distribution function of whole micro-contacts, can be written as[11, 15, 17] 
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where, la   denotes the maximum of truncated area of a surface. Ψ is domain extension factor, can be 

obtained with the transcendental equation as follows: 
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The total normal load in the first elastic-plastic regime can be obtained as 
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The total normal load in the second elastic-plastic regime can be obtained as 
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The total normal load in first fully plastic regime can be expressed as 
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The total normal load in second fully plastic regime can be expressed as 
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Summing up the above, the normal contact load of asperity, can be rewritten as follows: 
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                                             (20) 

3. Normal contact stiffness of bolted joint 

3.1 Normal contact stiffness of asperity 

According to the definition of the contact stiffness, the contact stiffness of a single asperity can be 

expressed as 

n

df da
k

d da


=


                                                                   (21) 

Substituting Eqs.(3, 11-12) into Eq.(21), contact stiffness, in first and second elastoplastic 

deformation regimes, can be written as  
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3.2 contact stiffness of bolted joint  

The total normal stiffness Kn can be given by integrating in the whole contact surface as 

1 2n nep nepK K K= +                                                                    (24) 

Where Knep1 and Knep2 are the normal stiffness in first and second elastoplastic deformation 
regimes. 
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Substituting Eqs. (15, 22-23) into Eq. (25-26), the total normal stiffness Kn can be rewritten as 
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Where the parameters H G1, and HG2, can be expressed as. 
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4. The experimental set-up and validation of the bolted joint model 

In order to verify the effectiveness of the presented contact model, the bolted specimens are designed as 

shown in Fig.1. First, the natural frequency of the bolted specimen was experimentally determined. 

Secondly, the contact pressure of bolted joint can be obtained in the FE method, then, the largest 

truncated area la   can be calculated by using Eq. (20). Substituting la   into Eq.(27), the normal stiffness 

of the contact surface can be obtained. Finally, numerical values of normal stiffness was then assigned 

to MATRIX27 element of the FE model, which is used to connect the node-to-node of two contact 

surfaces. The FEM results were compared with the experimental results.  

 

 

 
Figure 1. Experimental set-up of bolted joint. 

 
Figure 2. Test specimen and Dimensions. 

4.1 Experimental Set-up and Experimental Principle  

The assembled experimental structure consisted of two T type specimen connected with two steel 

structure bolts (M16). The dimensions and material properties of the T type specimen are shown in Fig. 

2 and Table 1, respectively. The LMS Test.lab vibration testing and analysis system was adopted to 

acquire and analyse the signals of model knocking test, and the first nature frequency was obtained. 

The elastic modulus (E), Passion ratio (v), and density of specimen are 210 GPa, 0.28 and 7800 kg/m3, 

respectively. 
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Figure 3. Scanning specimen surface. 

 
Figure 4. The power spectrum density. 

The surface was scanned by using the NANOVEA three dimensional surface Profiler, as show in 

Fig. 6. The power spectrum density of the test surface is shown in Fig. 7. By means of the power 

spectrum density method, we obtained the 2D fractal dimension Ds and fractal roughness parameter. 

Ds=1.383 and G=8.589×10-13. The three-dimensional fractal dimension D= Ds+1. 

4.2 Verification of the presented model 

 
Figure 5. The comparison of normal stiffness 

Fig. 5 shows that, the normal contact stiffness of bolted joint can be improved by the increase of 

preload.  

The contact stiffness obtained by the present model and YC model, under different normal load, are 

showing in Fig. 5. It is interesting to note that, under lower loads the present model results are in good 

agreement with the YC results. It should be noted that, while for higher contact loads, the present results 

gradually step away from the YC results, and obtain lower stiffness values. A gap of stiffness appear for 

F values (about 30), in the present model. This may be because that, according to KE model, the contact 

loads have a small difference to each other in the first and second elastic-plastic regime at the critical 

value δ/δc=6. 

Table 1. Natural frequencies of the bolted assembly adopting different model 

Pre-tightening force of bolt 5 KN 25 KN 40 KN 

Experimental results 522.86 588.26 602.23 

Results adopting the proposed model 519.79 592.68 604.63 

Error value with experimental results 3.67 4.42 2.4 

Results adopting Y-C model 521.62 594.21 613.21 

Error value with experimental results 1.24 5.95 10.98 

 



7

1234567890‘’“”

AMIMA 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 382 (2018) 032042 doi:10.1088/1757-899X/382/3/032042

 
 
 
 
 
 

 

 

 
(a) Pre-tightening force 5 KN 

 
(a) Pre-tightening force 40 KN 

Figure 6. The natural frequency value obtained by model experiment. 

The first-order natural frequency value obtained by model experiment are showing in Fig. 6 . Fig. 7 

shows the simulated modal shape and nature frequency with the presented model, Fig 8 correspond to 

the Y-C model. The 1st order natural frequencies of bolted assembly adopting different bolted joint 

model, under different force, are shown in Table 1. Comparing with the experimental results under the 

same force, it can thus be seen that, for the presented model, the error values of the 1st order natural 

frequencies of bolted assembly are 3.67, 4.42, and 2.4, respectively, under the force are 5 KN, 25 KN, 

40 KN. As to the YC elastic-plastic model, the error values are 1.24, 5.95 and 10.98. It is interesting to 

note that under lower contact loads the YC model is more accurate than the present model. While for 

higher loads the YC become less accurate, as increases of the loads, the error values also gradually 

become larger. The comparison results indicate that the presented model can better meet the 

requirements for predicting the dynamic characteristic of an assembly with bolted joints, accurately. 

 

 

 
(a) Pre-tightening force 5  KN 

 
(a) Pre-tightening force 40  KN 

Figure 7. Simulated modal shape and nature frequency with the presented model 

 

 

 

 
(a) Pre-tightening force 5  KN 

 
(a) Pre-tightening force 40  KN 

Figure 8. Simulated modal shape and nature frequency with the Y-C model 
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5. Conclusion 

A modified three-dimensional fractal model of elastic-plastic contact is established in this paper. The 

normal stiffness of contact surface for the bolted joint is obtained. Revising the drawback of MB fractal 

models and the existing elastic-plastic fractal models, that only elastic deformations were considered 

under higher contact loads. While contact loads beyond the critical values, elastic-plastic deformation 

and plastic deformation were also considered in present model. Comparing the first-order natural 

frequencies of the bolted structure obtained by the present model and the Y-C elastic-plastic fractal 

model, severally, with the experimental results. The comparisons show that the present model is more 

accuracy for predicting the contact stiffness and dynamic performance of bolted structures, particularly, 

while under higher contact loads. The proposed method greatly improve the prediction accuracy of 

stiffness for bolted joints, which can be better applied to predict the dynamic properties of bolted 

structure in the design stage. 
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