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Abstract. In this paper, we give a fractional-order differential equation model of HIV infection 

by introducing Caputo derivative and immune response. We prove that the model established in 

this paper has a unique nonnegative solution. With characteristic equation and Hurwitz 

criterion , the local stability of the infection-free equilibrium, the immune-absence equilibrium 

and the immune-presence equilibrium are analyzed. 

1. Introduction 

In the past decades, mathematical models have been established for describing the changes in HIV, 

HBV, HCV and other viral loads in the infected persons, which provide a great help to explore the 

diagnosis and medical treatments of infectious diseases. Although previous works are restricted to 

integer order differential equations [1-4]. Since fractional differential equations have the ability to 

provide an exact description of different nonlinear phenomena, they have received much attention and 

become popular. The advantage of fractional-order models lies in the fact that they have memory and 

allow greater degree of freedom in the model. Now the qualitative properties and numerical solutions 

of fractional order virus infection models have been studied by more and more scholars [5-6]. The 

immune response following viral infection is universal and necessary in controlling or even 

eliminating the disease [2]. In view  of these references, we take a fractional-order differential 

equation model of HIV infection with immune response into consideration in this paper  as follows: 
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                                                  0(0)x x= , 0(0)y y= , 0(0)z z= .                                              (1.2) 

Here 0 1  ; ( )x t is the concentration of uninfected cells at time t ; ( )y t  is the concentration of 

infected cells that produce virus at time t ; ( )z t  is the concentration of antigen-specific CTLs  at time 
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t .   is the growth rate of new healthy cells. a  and d  are  the death rate of infected cells and 

uninfected cells, respectively .    is the rate constant characterizing infection of the cells. is  the death 

rate of.  p is the death rate of infected cells due to the immune system. The immune response is 

supposed to decay exponentially at a rate bz  and get stronger at a rate cyz . All parameters in the 

model are positive. 

2. Fractional Calculus 

In this paper, we will use the following definition and lemmas about fraction calculus. 

Definition 1. The Caputo ( C ) fractional derivative of order 0  , 1n n−   , n N ,  is defined 

as 
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where the function ( )f t  has absolutely continuous derivatives up to order ( 1)n − . In particular, when 

0 1  , one has [7] 
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Lemma 2. Consider the commensurate fractional-order system as follows: 
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with 0 1   and 
nx R . The equilibrium points of system (2.3) are calculated by solving the 

following equation: ( ) 0f x = . These points are locally asymptotically stable if all eigenvalues ir  of 

Jacobian matrix /J f x=    evaluated at the equilibrium points satisfy [7]: 
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Lemma 3. For the polynomial equation, 

                                          1 2
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the conditions which make all the roots of (2.5) satisfy (2.4) are  displayed as follows: 

(i) for 1n = , the condition is 1 0h  ; 

(ii) for 2n = , the conditions are either Routh-Hurwitz conditions or  
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(iii) for 3n = , 

(a) if the discriminant of ( )P  , ( )D P  is positive, then Routh-Hurwitz conditions are the necessary 

and sufficient conditions ; that is, 1 0h  , 3 0h  , and 1 2 3h h h if ( ) 0D P  ; 

(b) if ( ) 0D P  , 1 0h  , 2 0h  , and 3 0h  , then (2.4) for (2.5) holds when 2 / 3  ; 

(c) if ( ) 0D P  , 1 0h  , and 2 0h  , then (2.4) for (2.5) holds when 2 / 3  ; 

(d) if ( ) 0D P  , 1 0h  , 2 0h  , and 1 2 3h h h= , then (2.4) for (2.5) holds for all [0,1)   [8]. 

3. Nonnegative Solutions 

Let  3 3 : 0R W R W+ =    and ( )( ) ( ), ( ), ( )
T

W t x t y t z t= .  

Lemma 4 . Let ( ) [ , ]f x C a b  and ( ) [ , ]D f x C a b   for 0 1  . Then one has 
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[9]. 

Remark 5. Suppose that ( ) [ , ]f x C a b  and ( ) [ , ]D f x C a b  , for 0 1  . It is clear from 

Lemma 5 that if ( ) 0D f x  , ( , )x a b  , then  ( )f x is non-decreasing for each [ , ]x a b . If 

( ) 0D f x  , ( , )x a b  , then ( )f x  is non-increasing for each [ , ]x a b . 

Theorem 6. There is a unique solution for the initial value problem (1.1) with (1.2) and the 

solution remains in 3R+
 [10]. 

4. Equilibrium States  

Let ( ) 0x t = , ( ) 0y t =  and ( ) 0z t = ,  then obtain the equations as follows: 
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By solving the equations (4.1), we can obtain the three types of nonnegative equilibrium of model 

(1.1).   

Model (1.1) always has an infection-free equilibrium 0E , where ( )0 0( ,0,0) / ,0,0E x d= = .  

We denote: 0R
ad


= ,  1 0

b
R R

cd


= −  . 0R  is defined as the basic reproductive number of the model 

(1.1) and 1R  is defined as the immune reproduction number of the model (1.1). 

 When 0 1R  , Model (1.1) has an immune-absence equilibrium 1E besides 0E , where 

0
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When 1 1R  ,  Model (1.1) has an interior immune-presence equilibrium *E  besides 0E  and 1E ,  

where *E =
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5. Local Stability  

With characteristic equation and Hurwitz criterion, we analyze the local asymptotic stability of the 

model (1.1). 

Theorem 7.  Consider model (1.1). 

(1) If 0 1R  , the infection-free equilibrium 0E  is locally asymptotically stable. 

(2) If  0 1R  , the infection-free equilibrium 0E  is unstable. 

(3) If 0 1R = , it is a critical case. 

Proof.  The characteristic equation for 0E  is simplified as follows: 

                                                 ( )( )( )0 0r d r b r a x+ + + − = .                                                (5.1) 

The equation (5.1) has the roots 1 0r d= −   which means 1arg  ( / 2)r   =  , 2 0r b= −   which 

means 2arg  ( / 2)r   =  , and 3 0 0( 1)r x a a R= − = − . Because the imaginary part of 

characteristic root 3r  is zero, 0 1R  which means 3arg  ( / 2)r   =   is necessary and sufficient to 

ensure the local asymptotic stability of the infection-free equilibrium 0E . If 0 1R  , 
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3arg  0 ( / 2)r  =  ;  hence the infection-free equilibrium 0E  is unstable. If 
0 1R = , 

3 0r = , it is a 

critical case. 

Theorem 8.  Consider model (1.1). 

(1) If 
1 1R  , the immune-absence equilibrium 

1E  is locally asymptotically stable. 

(2) If  1 1R  , the immune-absence  equilibrium 1E  is unstable. 

(3) If 1 1R = , it is a critical case. 

Proof.  The characteristic equation for 1E  is simplified as follows:  

                                        ( ) ( )2 2

1 1 1 1 0b r cy r d y r x y  + − + + + =  .                                     (5.2) 

The root of the characteristic equation (5.2) 1 1r cy b= − is negative and 1arg  ( / 2)r   =   

when 1 1R  ，  positive and 1arg  0 ( / 2)r  =   when 1 1R   , and zero when 1 1R = , which is a 

critical case. 

Now, we consider the equation 

( )2 2

1 1 1 0.r d y r x y + + + =
 
                                        (5.3) 

Because 1 0d y+   and 2
1 1 0x y  , the equation (5.3) has two negative real roots , which are 

denoted by 2r  and 3r . It is easy to see 2arg  ( / 2)r   = 
 
and 3arg  ( / 2)r   =  . Hence, when 

1 1R  , the immune-absence equilibrium 1E  is locally asymptotical stable; when 1 1R  , the immune-

absence equilibrium  1E  is unstable;  when 1 1R = , it is a critical case. 

The characteristic equation for *E  is simplified as follows: 

                                                ( ) 3 2

1 2 3 0P r r a r a r a= + + + = ，                                              (5.4) 

where *
1 0a d y= +  , * * 2 * *

2 0a cpy z x y= +  , ( )* * *
3 0a cpy z d y= +  , 1 2 3 0a a a−  . 

We obtain the discriminant of (5.4) 
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Using the result ( iii ) of Lemma 3 and Lemma 2, we obtain the following theorem. 

Theorem 9.  Consider model (1.1). In the condition of 1 1R  , 

 (1) if the discriminant of ( )P r , ( )D P  is positive, namely,  ( ) 0D P  , then the immune-present 

equilibrium *E  is locally asymptotically stable for 0 1  ; 

 (2) if ( ) 0D P  , then the immune-present equilibrium *E  is locally asymptotically stable for 

0 2 / 3  . 

6. Conclusion 

Mathematical model as an important infectious disease theory research method, in explaining disease 

outbreaks, describing the process of the spread of the epidemic, revealing the mechanism of viral 

infection and so on, have played a significant role. Because of the non-locality ,memory and other 

properties of fractional order model, fractional differential equations are more practical in biological 

systems. In this paper, we give a fractional-order differential equation model of HIV infection by 

introducing Caputo derivative and immune response. We prove that the model which is builded in this 

article has a unique nonnegative solution. With characteristic equation and Hurwitz criterion, we 

analyze the local asymptotic stability of the model (1.1). We discover that the stability of the infection-
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free equilibrium and the immune-absence equilibrium of model (1.1) are the same as that of integer-

order HIV infection model. When  
0 1R  , the infection-free equilibrium 0E  is locally asymptotically 

stable; however, when 0 1R  , the infection-free equilibrium 0E is unstable and when 
1 1R  , the 

immune-absence equilibrium 1E  is locally asymptotically stable; however, when 
1 1R  , the immune-

absence equilibrium 1E is unstable. When 1 1R   and ( ) 0D P  , the immune-presence equilibrium *E  

is locally asymptotically stable for 0 1  , while when ( ) 0D P  , the immune-presence equilibrium 
*E  is locally asymptotically stable only for 0 2 / 3  , which are different from integer-order HIV 

infection model. 
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